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ABSTRACT

We address the problem of frequency-selective channel esti-
mation and symbol detection using superimposed training.
Both single and multiple antenna systems will be studied.
The superimposed training consists of the sum of a known
sequence and a data-dependent sequence, which is unknown
to the receiver. The data-dependent sequence cancels the
effects of the unknown data on channel estimation. The
performance of the proposed approach is shown to signifi-
cantly outperform existing methods based on superimposed
training.

1. INTRODUCTION

Channel estimation is a major challenge for reliable wire-
less transmissions. In most practical systems, this task is
accomplished by using pilot symbols that are known to the
receiver. Often, these pilot symbols are time- or frequency-
division multiplexed (TDM or FDM) with the data, i.e.,
pilots and information-bearing symbols are transmitted on
different time or frequency slots. Although accurate chan-
nel estimates can be obtained if the pilots are judiciously
placed [1], this method wastes bandwidth. An alternative
method is the superimposed training (ST) scheme where pi-
lots are added to the data symbols [2, 3, 4, 5]. This scheme
saves valuable bandwidth at the expense of a reduction in
the information signal-to-noise ratio (SNR), since some of
the transmitted energy is allocated to the hidden pilots. ST
schemes offer tradeoffs between loss of rate (slots for train-
ing) and simplicity of the receiver, channel estimation vs.
tracking, and possibly improved power efficiency.

The idea of using ST to estimate the channel has recently
received renewed attention. Recent contributions are based
on superimposing a known periodic sequence on the data
[2, 3, 4, 5, 6]. In [6], the deterministic (or sample) mean
of each data block was removed prior to transmission, and
this approach was shown to reduce the effect of the un-
known data on the performance of both channel estimation
and equalization. Here, we propose a superimposed training
scheme that fully cancels the effects of the unknown data
on the performance of the channel estimator. Unlike the
conventional ST scheme, the training sequence is the sum
of a periodic sequence, which is known to the receiver, and a
data-dependent sequence, which is unknown to the receiver.
We show that by judiciously selecting the latter sequence,
a very significant improvement in terms of estimation accu-
racy and symbol error rate can be obtained. We first focus
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on single antenna systems. Then, we extend the proposed
technique to multiple antenna systems.

Notation: Superscripts ∗, and T denote Hermitian and
transpose operators. The trace and statistical expectation
are denoted by Tr {·} and E {·}. The DFT of a (N × 1)
vector x is denoted by x̃ = FNx, where FN has (m, n)

entry 1√
N

e−j2πmn/N . FP,L will denote the leading P × L

submatrix of FP . The nth element of a vector z is denoted
by z(n), and ⊗ will denote the Kronecker product. The
(N × N) identity matrix is denoted by I, and the (Q × Q)
matrix of all ones by 1Q. Finally, diag (a1, ..., aN ) is the
(N × N) diagonal matrix whose nth diagonal entry is an.

2. THE PROPOSED ST SCHEME

Consider a single-carrier block transmission system operat-
ing over a frequency-selective channel. Let N denote the
block length. We assume the channel to be time-invariant
over a single block, but it could vary across blocks. As-
sume that the discrete-time memory of the channel is upper
bounded by L− 1, which is known. Let h = [h0, ..., hL−1]

T

denote the impulse response of the channel. In order to
avoid interblock interference, a cyclic prefix (CP) of length
≥ L − 1 is inserted between the blocks. At the receiver,
after removing the CP, the signal model for each block can
be expressed as

x = Hs + v (1)

where s is the (N × 1) transmitted block, H is an (N ×N)
circulant matrix with first column, [h0, h1, ...hL−1, 0, ..., 0]T ,
and v is an additive white noise vector with covariance σ2

vI.
Further s is assumed to be zero mean and independent of
v. Since we perform block-by-block processing, we do not
need a block index in eq. (1).

In a TDM scheme, some of the entries of s are known
pilots. In the conventional ST scheme, a known training
sequence, c, is added to the data vector, w, i.e., s = w + c.
The data symbols are assumed to be zero-mean, indepen-
dent and identically distributed random variables drawn
from a finite alphabet, e.g., PSK or QAM; let σ2

w denote
the data symbol power. The channel coefficients can be
consistently estimated using the first-order statistics of the
received signal [2, 3, 4]. In order to simplify channel estima-
tion, c is often chosen to be periodic; let P denote its period
and assume that Q = N/P is an integer. A disadvantage
of this method is that the performance of the channel es-
timator is affected by the embedded unknown data, which
acts like input noise. In order to better explain this effect
and also to motivate the proposed ST scheme, we use the
following frequency domain interpretation. Since H is cir-
culant, the discrete-Fourier transform (DFT) of x can be
written as

x̃ = Hc̃ + Hw̃ + ṽ (2)
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where H = diag (H(0), ..., H(N − 1)) with H(k) being the
frequency response of the channel at normalized frequency
2πk/N ,

H(k) =

L−1∑
�=0

h�e
−j2πk�/N , k = 0, ..., N − 1 .

Since c is periodic with period P , its energy is concen-
trated only at the P equispaced frequency bins, k = �Q,
� = 0, ..., P − 1, which we will refer to as pilot frequencies.
In contrast, the energy of the data symbols is spread over all
frequency bins. The channel coefficients are then estimated
using the pilot frequencies, treating Hw̃ and ṽ as additive
noise sequences. Here, we propose to develop a channel es-
timator that is completely impervious to the unknown data.
We propose to distort the data vector so that its DFT at
the pilot frequencies, k = �Q, � = 0, ..., P − 1, is identi-
cally zero. If we let the distorted data vector be denoted by
w −e, then it is easy to verify that the corresponding DFT
at the pilot frequencies is zero provided that

Q−1∑
m=0

w(i + mP ) =

Q−1∑
m=0

e(i + mP ), i = 0, ..., P − 1 . (3)

A trivial choice is e(n) = w(n) which leads to TDM. For su-
perimposed training, the energy of the distortion sequence e
should be minimized for a fixed energy in the data sequence
w. The solution in this case is found to be

e(i + mP ) = e(i) =
1

Q

Q−1∑
m=0

w(i + mP ), i = 0, ..., P − 1 ,

which is the cyclic mean of the data. In this case, data
distortion corresponds to simply removing the cyclic mean
of the data. The distortion component can be written as
e = Jw, where J = 1

Q
1Q ⊗ IP . The transmitted block is

then given by
s = (I − J)w + c . (4)

Now, the DFT of s at the pilot frequencies is identical to
that of c. In other words, channel estimation will only be
affected by the additive noise, v, and not by the unknown
data vector, w. The proposed ST technique can also be seen
as a data-dependent superimposed training (DDST) scheme
where the training sequence is the sum of a known sequence,
c, and an unknown data-dependent sequence, e := −Jw.

The proposed ST scheme may seem similar to orthog-
onally multiplexing pilots and data tones in multicarrier
(MC) systems [7]. However, in the proposed method, the
symbol energy is spread over the entire bandwidth. Set-
ting P DFT coefficients of the data to zero affects the sym-
bols equally. Therefore, unlike MC systems, the proposed
method for single carrier systems does not entail waste of
bandwidth. Indeed, for MC systems, only N − P informa-
tion bearing symbols would be transmitted in each block.
Both schemes involve a length L CP.

3. CHANNEL ESTIMATION AND TRAINING
DESIGN

At the receiver, channel estimation can be carried out as
in the conventional ST scheme. A time-domain estimator
based on synchronized averaging of the received signal was
developed in [2, 4, 5]. The same estimator can be obtained
using the frequency domain [3], which will be used here
since equalization will be carried out in this domain.

Since the DFT of the distorted data is identically zero
at the pilot frequencies, we have x̃(kQ) = H(kQ)c̃(kQ) +
ṽ(kQ), k = 0, ..., P − 1. To ensure consistent channel esti-
mates based on this, at least L of the P pilot cycles of c

should be non-zero. We estimate the frequency response of
the channel at the pilot frequencies where c̃(kQ) �= 0, via

Ĥ(kQ) = x̃(kQ)/c̃(kQ), k = 0, ..., P − 1 .

The channel coefficient vector is estimated as

ĥ =
1√
P

F∗
P,Ld̂ (5)

where d̂ = [Ĥ(0), Ĥ(Q), ..., Ĥ((P − 1)Q)]T .
The channel estimate in eq. (5) is unbiased and its mean

square error (MSE) is given by

mse
(
ĥ

)
:= E

{
L−1∑
l=0

|ĥl − hl|2
}

=
σ2

v

P
Tr

{
F∗

P,LC−1FP,L

}

where C = diag
(|c̃(0)|2, |c̃(Q)|2, ..., |c̃((P − 1)Q)|2). Under

the constraint of fixed training power 1
N

∑N−1
n=0 |c(n)|2 =

σ2
c , the above MSE is minimized when |c̃(kQ)|2 =

σ2
c (N/P ), k = 0, ..., P − 1. The MSE expression becomes

mse
(
ĥ

)
=

Lσ2
v

Nσ2
c

(6)

Further, since the above MSE is independent of P and data
distortion increases with P (for fixed N), P should be as
small as possible, i.e., P = L. Note that the MSE of the
channel estimate is now independent of the unknown data,
unlike that in existing ST-based methods [4, 5].

Since there are infinitely many periodic sequences for
which the cycles are all equal in magnitude, sequences with
minimum PAR are desirable. In fact, ‘ideal’ sequences, i.e.,
optimal and constant envelope (i.e., unit PAR) sequences,
exist for all values of P. One of these sequences is the chirp
sequence c(n) = σc exp(j2πn(n + i)/P ) with i = 2 when P
is even and i = 1 if P is odd [4].

4. SYMBOL DETECTION

After the channel has been estimated, we can remove the
contribution of c from x by simply computing (see (1), (4))

z = (I − J)x . (7)

In the frequency domain, this is equivalent to setting the
DFT of x at the pilot frequencies to zero. Since both H
and J are circulant, they are commutative, and (I − J) is
idempotent, z can be expressed as

z = H(I − J)w + (I − J)v .

The additive noise, v̆ = (I − J)v, is now slightly colored.
However, this color will fade away when Q is large, and will
therefore be ignored in what follows. From the definition of
J, it follows that the power of v̆ is σ̆2

v = σ2
v(1 − 1/Q).

Since H is circulant, equalization can be carried out in
the frequency domain, i.e., the equalized signal is given by

u = F∗
NGz̃ (8)

where z̃, the DFT of z, is obtained by setting the DFT
of x at the pilot frequencies to zero, and G is an (N ×
N) diagonal matrix whose kth entry G(k) is G(k) =

1/ ˆH(k) in the case of zero-forcing equalization and G(k) =

Ĥ∗(k)/(|Ĥ(k)|2 + σ̆2
v) in the case of MMSE equalization.

Due to data distortion in the transmission, u �= w even in
the absence of channel estimation error and noise. Indeed,
in this ideal scenario, u = (I−J)w. Since (I−J) is singular,
w cannot be recovered linearly. However, using the fact
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that the data symbols are drawn from a finite alphabet
and that Jw is small compared to w, symbol detection
can be accomplished by finding the vector of constellation
points w that minimizes the Euclidian distance between u
and (I − J)w. However, this sequence detection scheme
is computationally cumbersome and will therefore not be
considered here. Instead, we propose the following iterative
symbol-by-symbol detection scheme.

The symbol-by-symbol detection algorithm is initialized
by treating Jw as an additional noise term, and considering
u in eq. (8) as a soft detector of w; the initial hard detector
of w is given by

w̄(0) = �u�
where �u� denotes the vector of constellation points that
are the closest to the vector u. The detected symbols are
used to estimate Jw to be used in the next iteration. The
detected symbols at the ith iteration are given by

w̄(i) = �u + Jw̄(i−1)�
As we will see in section 6., most of the gain in symbol
detection performance over existing ST-based methods is
obtained in the very first iteration.

5. EXTENSION TO MIMO SYSTEMS

In this section, we extend the proposed approach to mul-
tiple antenna systems. Again, we assume that a CP is
inserted between the data blocks. We first address the
case of single-input multiple-output (SIMO) systems. Then,
we study the more general case of multiple-input multiple-
output (MIMO) systems.

5.1. SIMO systems
The above ST scheme is also valid for SIMO systems since
the estimation of the channels at different receive diversity
branches are decoupled when based on first-order statistics.
Symbol detection is based on maximum ratio combining
(see eq. 10). Some details are given next.

Let R denote the number of receive antenna and let xr

denote the signal vector at the rth receive antenna obtained
after removing the CP. We first compute

zr = (I − J)xr, r = 1, ..., R (9)

and its DFT z̃r. Then, we estimate the channels as in

section 3., and compute their frequency responses, Ĥr(k),
k = 0, ..., N − 1, r = 1, ..., R. Symbol detection is based on
the following vector

u =
1

R
F∗

N

R∑
r=1

Grz̃r (10)

where Gr is an (N × N) diagonal matrix whose kth entry

Gr(k) is Gr(k) = 1/ ˆHr(k) in the case of zero-forcing equal-

ization and Gr(k) = Ĥ∗
r (k)/(|Ĥr(k)|2 + σ̆2

v) in the case of
MMSE equalization. The next steps of symbol detection
are exactly the same as in Section (4.).

5.2. MIMO systems
Let M and R respectively denote the number of transmit
and receive antennas. We also assume that R ≥ M . Let
hm,r = [hm,r(0), ..., hm,r(L − 1)]T denote the channel be-
tween the mth transmit antenna and rth receive antenna.
The block received at the rth antenna is, after removing the
CP, given by

xr =

M−1∑
m=0

Hm,rsm + vr (11)

where sm, Hm,r and vr are defined as in Section 2.. For
the conventional ST, sm = wm + cm. The DFT of xr can
be expressed as

x̃r =

M−1∑
m=0

Hm,r c̃m +

M−1∑
m=0

Hm,rw̃m + ṽr (12)

where Hm,r is defined like H. In order to identify the chan-
nels, each cm is designed such that its DFT is nonzero at L
frequencies, and these frequencies have to be distinct for dif-
ferent cm’s. It can be shown that for each antenna, choosing
cm such that its DFT has only L nonzero elements mini-
mizes channel estimation errors provided that these pilots
are equispaced. Further, since data distortion for the DDST
will increase with the total number of pilot frequencies, the
latter should be as small as possible. The cm’s are therefore
designed such that their DFTs satisfy the following:

|c̃m(k)|2 =
Nσ2

c

LM

L−1∑
i=0

δ(k − [m + iM ]Q), m = 0, ..., M − 1

(13)
where Q = N/P , assumed to be integer and P := ML.
The above design implies that all pilot frequencies are equi-
spaced; the spacing is equal to Q; and the spacing between
pilots from the same antenna is N/L = MQ. In the above
equation, we have assumed that the total power allocated
to training is split equally between the transmit antennas.
The above training sequences can be generated as follows.
We design the training sequence for the 0th antenna using
eq. (13), and then generate the sequences for the other
antennas using

cm(n) = ej2πmn/P c0(n), m = 1, ..., M − 1; n = 0, ..., N − 1
(14)

In order to cancel the effects of the unknown data on
channel estimation performance, we set the DFT of the
data vectors w at all the pilot frequencies to zero. For
the design in eq. (13), the distorted transmitted blocks can
be implemented as in eq. (4), i.e. by removing the cyclic
mean from the data vectors. The number of pilot frequen-
cies, P = ML, is M times larger than that for the SISO
case. Thus, data distortion increases not just with L but
also with M , the number of transmit antennas. Channel
estimation can be carried out as in Section 3. since the esti-
mates of different channels are decoupled. Indeed, the pilot
frequencies are distinct across the transmit antennas. The
MSEs of the channel estimates are the same as in (6) after
replacing σ2

c by σ2
c/M .

For symbol detection, once we have estimated the chan-
nel coefficients, we first compute the frequency response of
the channels at all frequency bins. Then, at each receive
antenna, we remove the contribution of the cm’s by com-
puting zr as in eq. (9) where J is defined with P = ML.
Equalization and signal separation are carried out in the
frequency domain. We compute the DFT of the zr’s, the
z̃r’s. For each frequency bin, let z̃(k) = [z̃0(k), ..., z̃R(k)]T ,
and let

Ĥ(k) =

⎛
⎜⎜⎜⎝

Ĥ11(k) Ĥ12(k) · · · Ĥ1M (k)
Ĥ21(k) Ĥ22(k) · · · Ĥ2M (k)

...
. . .

...
ĤR1(k) ĤR2(k) · · · ĤRM (k)

⎞
⎟⎟⎟⎠ (15)

The MMSE equalizer/separator output at the kth frequency
bin is computed as

a(k) = G(k)z̃(k) (16)
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G(k) = (Ĥ(k)Ĥ∗(k)+ σ̆2
vI)

−1Ĥ∗(k). Then, we form um by
grouping the mth entry of a(k), k = 0, ..., N −1 in a vector.
The vector um is then used to detect wm, as in Section 4..

If the MIMO channel is flat-fading, the following obser-
vations/simplifications apply

• No cyclic prefix is required

• The equalizing matrices G(k) are frequency indepen-
dent. Therefore, equalization can be simplified.

6. SIMULATION RESULTS

We compare the proposed DDST scheme with both the con-
ventional ST and TDM schemes in terms of channel estima-
tion performance and symbol error rate (SER). The length
of the data block is set to N = 256. The channel is ran-
domly generated at each Monte-Carlo run and is assumed
to be Rayleigh with length L = 8; the coefficients are uncor-
related and their powers are given by the exponential delay
profile E

{|h�|2
}

= exp(−0.2�). The periodic sequence is
chosen to be optimal according to Section 3. and its power
is set to be 10% of the total transmitted power, σ2

s ; its pe-
riod is set to P = L. The data symbols are drawn from
QPSK constellations. Due to lack of space, we limit our
simulation study to the SISO case.

The channel estimation performance of the proposed
DDST scheme is the same as that of the TDM scheme if
the percentage of power used in the DDST scheme is the
same as that of pilot symbols used in the TDM scheme, as
is verified in Figure 1 where the number of training symbols
in the TDM scheme is Nt = 26. Figure 2 displays the SER
for the three schemes as well as that when the channel is ex-
actly known at the receiver and full power is assigned to the
data symbols. It is seen that the SER for the DDST scheme
is close to that for the TDM scheme. The latter however
consumes 10% of the bandwidth. Full investigation of the
effects of N , constellation size, and σ2

c on performance will
be carried out in a longer version of this paper.

7. CONCLUSIONS

We have presented a new pilot assisted transmission scheme
to estimate frequency-selective channels. The scheme con-
sists of setting a few points of the DFT of the data to known
values. This operation can be easily implemented in the
time domain when these DFT points are equispaced. The
channel is estimated using the DFT of the received sig-
nal at these pilot frequencies. Detection of the distorted
symbols is carried out using an iterative scheme. The pro-
posed method was shown to outperform existing methods
based on superimposed training, and compares well with
the time-division multiplexing training scheme, in terms of
both channel estimation performance and symbol error rate.
Unlike the TDM scheme, the proposed pilot transmission
scheme does not entail waste of bandwidth.
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