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ABSTRACT

Channel estimation for single-input multiple-output
(SIMO) time-invariant channels using superimposed train-
ing has been recently considered by several authors. In
particular, in Tugnait and Luo (2003), the channel is esti-
mated using only the first-order statistics of the data under
a fixed power allocation to training. We first present a
performance analysis of the approach of Tugnait and Luo
(2003) to obtain a closed-form expression for the channel
estimation variance. We then address the issue of superim-
posed training power allocation for complex Gaussian ran-
dom (Rayleigh) channels. Using the developed channel es-
timation variance expression, we cast the power allocation
problem as one of optimizing a signal-to-noise ratio (SNR)
for equalizer design. Illustrative simulation examples are
provided.

1. INTRODUCTION

Consider an SIMO (single-input multiple-output) FIR (fi-
nite impulse response) linear channel with N outputs. Let
{s(n)} denote a scalar sequence which is input to the SIMO
channel with discrete-time impulse response {h(l)}. Then
the symbol-rate, channel output vector is given by

x(n) :=

L∑
l=0

h(l)s(n − l). (1)

The noisy measurements of x(n) are given by

y(n) = x(n) + v(n). (2)

In superimposed training one takes

s(n) = b(n) + c(n), (3)

{b(n)} is the information sequence and {c(n)} is a training
(pilot) sequence added (superimposed) at a low power to
the information sequence at the transmitter before mod-
ulation and transmission. There is no loss in information
rate compared with conventional time-multiplexed training.
Superimposed training-based approaches have been dis-
cussed in [1]-[3] and [4] for SISO (single-input single-output)
and/or SIMO systems. Periodic superimposed training for
channel estimation via first-order statistics for SISO and/or
SIMO systems have been discussed in [1], [3], [4] and [5].
The formulations of [3] and [4] allow for the possibility of
having an unknown dc offset at the receiver whereas [1] and
[5] do not. A performance analysis (closed-form solution for
the channel estimation variance) is performed in [3] under
the assumption of zero (or known) dc offset.

Objectives and Contributions: In this paper, we consider
a performance analysis of the approach of [4] to obtain a
closed-form expression for the channel estimation variance.
Unlike [3], our analysis is valid for any dc offset. We also
address the issue of superimposed training power allocation
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and the US Army Research Office under Grant DAAD19-01-1-
0539.

for complex Gaussian random (Rayleigh) channels. The
issue of power allocation for periodic superimposed training
has not been addressed in [1], [3], [4] and [5].

Notation: Superscripts H, T and † denote the complex
conjugate transpose, the transpose and the Moore-Penrose
pseudo-inverse operations, respectively. δ(τ) is the Kro-
necker delta and IN is the N × N identity matrix. The
symbol ⊗ denotes the Kronecker product. tr(A) is the trace
of the matrix A.

2. FIRST-ORDER STATISTICS-BASED
SOLUTION OF [4]

Here we briefly review the approach of [4], introduce nota-
tion and present our underlying system model assumptions.
Assumptions (H1)-(H3) are as in [4] whereas (H4) is not
needed by the approach of [4].

Assume the following:

(H1) The information sequence {b(n)} is zero-mean, white
with E{|b(n)|2} = σ2

b .

(H2) The measurement noise {v(n)} is nonzero-mean
(E{v(n)} = m), white, uncorrelated with {b(n)}, with
E{[v(n+τ)−m][v(n)−m]H} = σ2

vINδ(τ). The mean
vector m is unknown. We will also use the notation
v(n) = ṽ(n) + m.

(H3) The superimposed training sequence c(n) = c(n+mP )
∀m, n is a non-random periodic sequence with period

P . Let σ2
c := (1/P )

∑P

n=1
|c(n)|2.

(H4) Components of the channel coefficient h(l)’s are as-
sumed to be Gaussian random variables with zero mean
and variance 1

N(L+1)
. We also assume that hi(l) and

hm(k) are statistically independent if k �= l or i �= m.

Assumption (H4) is used in training power allocation con-
siderations; it is otherwise not essential to this paper. Un-
der (H4), the received SNR is given by (σ2

b + σ2
c )/σ2

v.

By (H3), we have cm := 1
P

∑P−1

n=0
c(n)e−jαmn,

c(n) =

P−1∑
m=0

cmejαmn ∀n, αm := 2πm/P. (4)

The coefficients cm’s are known at the receiver since {c(n)}
is known. We have

E{y(n)} =

P−1∑
m=0

[
L∑

l=0

cmh(l)e−jαml

]
︸ ︷︷ ︸

=:dm

ejαmn + m. (5)

In [4] dm is estimated as d̂m =
1

T

T∑
n=1

y(n)e−jαmn. (6)

Define

H :=
[

hH(0) hH(1) · · · hH(L)
]H

, (7)
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D :=
[

dH
1 dH

2 · · · dH
P−1

]H
, (8)

C := (diag{c1, c2, · · · , cP−1}V)︸ ︷︷ ︸
=:V

⊗IN , (9)

V :=

⎡
⎢⎢⎣

1 e−jα1 · · · e−jα1L

1 e−jα2 · · · e−jα2L

...
...

...
...

1 e−jαP−1 · · · e−jαP−1L

⎤
⎥⎥⎦

(P−1)×(L+1)

.

(10)
From (5), it follows that

CH = D. (11)

It is shown in [4] that if P − 1 ≥ L + 1 and αi’s are dis-
tinct, rank(C) = N(L + 1); hence, we can determine h(l)’s

uniquely. Define D̂ as in (11) with dm’s replaced with d̂m’s.
Then we have the channel estimate

Ĥ = C†D̂ := (CHC)−1CHD̂. (12)

Define

c̄(n) := σ−1
c c(n), c̄m := σ−1

c cm, C̄ := σ−1
c C (13)

so that (1/P )
∑P

n=1
|c̄(n)|2 = 1. Then we may rewrite (12)

as
Ĥ = σ−1

c C̄†D̂. (14)

Note that C̄ does not depend upon the training power σ2
c .

3. PERFORMANCE ANALYSIS

In this section we present a performance analysis of the
approach of [4] (briefly reviewed in Sec. 2). We provide
closed-form expressions when the underlying channel is non-
random and when (H4) holds true. Unlike [3], our analysis
is applicable to the case of unknown dc offset m.

Given the training sequence c(n) and channel length L+
1, C is known. By eq. (12),

cov{Ĥ, Ĥ|H} := E{[Ĥ − E{Ĥ|H}][Ĥ − E{Ĥ|H}]H |H}

= C†cov{D̂, D̂|H}C†H . (15)

We first calculate cov{D̂, D̂|H}. Suppose that record length
T = KP for some positive integer K. By (1)-(5), it follows
that

y(n) = E{y(n)} +

L∑
l=0

h(l)b(n − l) + ṽ(n)

︸ ︷︷ ︸
=:x̃(n)

. (16)

Using (6) and (16), we have

d̂m =
1

KP

KP∑
n=1

{
P−1∑
m̄=0

dm̄ejαm̄n + x̃(n)

}
e−jαmn

=

P−1∑
m̄=0

dm̄

[
1

KP

KP∑
n=1

ej(αm̄−αm)n

]
+ vm (17)

where

vm :=
1

KP

KP∑
n=1

x̃(n)e−jαmn. (18)

Since, for any K ≥ 1, we have

1

KP

KP∑
n=1

ej(αm̄−αm)n = δ(m − m̄), (19)

we have
d̂m = dm + vm. (20)

Hence, by (H1) and (H2), we have

E{d̂m|H} = dm, hence E{Ĥ|H} = H if T = KP. (21)

Define

Mmp := E{[d̂m − dm][d̂p − dp]H |H} = E{vmvH
p |H}

=
1

(KP )2

KP∑
n1=1

KP∑
n2=1

E{x̃(n1)x̃
H(n2)|H}︸ ︷︷ ︸

=:Rx̃(n1−n2)

e−jαmn1ejαpn2

(22)
since x̃(n) defined in (16) is wide-sense stationary. Set n1−
n2 = τ in (22) to obtain

Mmp =
1

KP

KP−1∑
τ=1−KP

{Rx̃(τ)e−jαmτ [
1

KP

KP∑
n2=1

ej(αp−αm)n2 ]

︸ ︷︷ ︸
δ(p−m)

}

=
1

KP
Sx̃(αm)δ(p − m) (23)

where Sx̃(αm) is the power spectral density of {x̃(n)} (con-
ditioned on H) at frequency αm rad./sec., defined as

Sx̃(αm) :=
∑

τ

Rx̃(τ)e−jαmτ = σ2
bH(ejαmτ )HH(ejαmτ )+σ2

vIN

(24)

H(ejα) :=

L∑
l=0

h(l)e−jαl and HH(ejα) :=

L∑
l=0

hH(l)ejαl.

(25)
Substitute (23) into (15) to obtain (we set KP = T )

cov{Ĥ, Ĥ|H} =
1

T
C†[block − diag {Sx̃(α1),Sx̃(α2),

· · · ,Sx̃(αP−1)}]C†H . (26)

Invoking assumption (H4), we have

EH{Sx̃(α)} =
(
σ2

bN−1 + σ2
v

)
IN ∀α. (27)

Hence, under (H4), it follows that

EH{cov{Ĥ, Ĥ|H}} =
σ2

bN−1 + σ2
v

T
C†C†H =

σ2
bN−1 + σ2

v

σ2
cT

C̄†C̄†H︸ ︷︷ ︸
=:Γ

.

(28)
Note that Γ in (28) is not a function of σ2

c or σ2
v. Also,

(28) holds true for all T for which T = KP , (K > 0 is an
integer), or for “large” T .

The variance of the channel estimate will be defined as

σ2
ĥ

:= EH{E{‖Ĥ − E{Ĥ|H}‖2|H}} (29)

= tr
{
EH{cov{Ĥ, Ĥ|H}}

}
=

σ2
bN−1 + σ2

v

σ2
cT

trΓ︸︷︷︸
=:γ

. (30)

If the channel is non-random, then we may take trace of
(26) as the variance of the channel estimation.
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4. TRAINING POWER ALLOCATION

In this section we consider the issue of superimposed train-
ing power allocation for complex Gaussian random channels
(assumption (H4)). Define the training power overhead β
as (see (3))

β :=
1
P

∑P

n=1
|c(n)|2

1
P

∑P

n=1
E{|s(n)|2}

=
σ2

c

σ2
b + σ2

c
. (31)

For a fixed SNR or transmitted power budget, higher β im-
plies smaller effective SNR at the receiver due to decreased
power in the information sequence but higher channel esti-

mation accuracy. Let ĥ(l) denote the estimate of h(l) based

on (12), i.e. ĥ(l) is the (l +1)th block component of Ĥ. We
can rewrite (2) as

y(n) =

L∑
l=0

ĥ(l)s(n− l)+

L∑
l=0

[h(l)− ĥ(l)]s(n− l)+ ṽ(n)+m

(32)
Following [4], let the estimate of the noise mean be given
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Figure 1. Channel estimation variance vs received SNR.
Record length = 200 or 400 symbols. Results based on 100 Monte
Carlo runs.

by

m̂ := (1/T )

T∑
n=1

[y(n) −
L∑

l=0

ĥ(l)c(n − l)]. (33)

Removing the estimated time-varying mean from the re-
ceived data, define

ỹ(n) := y(n) −
L∑

l=0

ĥ(l)c(n − l) − m̂ =

L∑
l=0

ĥ(l)b(n − l)

+

L∑
l=0

[h(l)− ĥ(l)][b(n− l)+ c(n− l)]+ ṽ(n)+m−m̂. (34)

We will use the approximation (assuming that m ≈ m̂)

ỹ(n) ≈
L∑

l=0

ĥ(l)b(n − l)

︸ ︷︷ ︸
=:xs(n)

+

L∑
l=0

[h(l) − ĥ(l)][b(n − l) + c(n − l)] + ṽ(n)

︸ ︷︷ ︸
=:w(n)

. (35)
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Figure 2. SNRd(β) (defined in (39)) vs β (defined in (31)).

When using ĥ(l) for equalization/detection, effective
noise (as a first-order approximation) is w(n) whose co-
variance contains channel estimation error covariance as a
component, which in turn will depend on β, and effective
signal is xs(n). An “optimum” value of the TIR α for the
superimposed training method may be obtained by maxi-
mizing the SNR in (35). Using (H1), the signal power in
(35) is given by

σ2
xs := E{‖xs(n)‖2} = σ2

b

L∑
l=0

E{‖ĥ(l)‖2}

= σ2
bE{‖Ĥ‖2} = σ2

b tr
{
EH

{
E{ĤĤH |H}

}}
= σ2

b tr
{
EH

{
cov{Ĥ, Ĥ|H} + HHH

}}
= σ2

b (σ2
ĥ
+1). (36)

The noise power in (35) is given by

σ2
w :=

1

P

P∑
n=1

E{‖w(n)‖2} = σ2
bσ2

ĥ
+ σ2

v +
1

P

P∑
n=1

L∑
l1=0

·
L∑

l2=0

E{[h(l1) − ĥ(l1)]
H [h(l2) − ĥ(l2)]}c∗(n − l1)c(n − l2).

(37)
The expected values in (37) can be obtained from traces
of appropriate N × N submatrices of (28); thus, (37) can
be computed. A simplification of (37) is possible if we
use m-sequences (maximal length pseudo-random binary

sequences) for {c̄(n)} in which case we have 1
P

∑P

n=1
c̄∗(n−

l1)c̄(n−l2) = 1 for l1 = l2 mod P , else = −1
P

. For P “large,”
we may consider {c̄(n)} to be white. Under this approxi-
mation, we have

σ2
w ≈ σ2

ĥ
(σ2

b + σ2
c ) + σ2

v. (38)

Using (36) and (37) (or (38)), we obtain the SNR of (35)
as a function of β as

SNRd(β) = σ2
xs/σ2

w. (39)

Our objective is to maximize SNRd(β) with respect to
(w.r.t.) β under the constraint of a fixed received SNR
RSNR, leading to the constraint

σ2
b + σ2

c = σ2
vRSNR. (40)

With (40) holding true for a given received SNR RSNR, one
can vary β and compute corresponding values of SNRd(β)
to pick an optimal β numerically.
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5. SIMULATION EXAMPLES

5.1. Example 1: Performance analysis
We took N = 1 and L = 2 in (1) with h(l) mutually in-
dependent for all l, zero-mean complex-Gaussian with vari-
ance as in (H4). Additive noise was zero-mean complex
white Gaussian to which we added an independent com-
plex random mean m with independent real and imaginary
parts, uniformly distributed over the interval [0, a]. The
variable a was picked to achieve a specified dc-offset to sig-
nal ac-component (DCAC) power ratio defined as

DCAC := E{|m|2}[E{|y(n) − v(n)|2}]−1. (41)

The SNR refers to the energy per bit over one-sided noise
spectral density with both information and superimposed
training sequence counting toward the bit energy. Informa-
tion sequence as well as superimposed training was binary.
We took the superimposed training sequence period P = 7
in (H3); it is a scaled m-sequence (maximal length pseudo-
random binary sequence) having a peak-to-average power
ratio of one (the smallest possible). The average transmit-
ted power in c(n) (scaled binary) was 0.2 of the power in
b(n) – a small penalty in SNR, leading to the training-to-
information sequence power ratio (TIR) of 0.2 .

Given the channel estimate (obtained via the method of
Sec. 2) and the true channel at the i-th Monte Carlo run

as ĥ(i)(l) and h(i)(l), respectively, the channel mean-square
error (CMSE) is defined as

NCMSE :=
1

Mr

Mr∑
i=1

2∑
l=0

‖ĥ(i)(l) − h(i)(l)‖2 (42)

where Mr is the number of Monte Carlo runs. The re-
sults averaged over 100 Monte Carlo for two different record
lengths (T=200 or 400 bits) are shown in Fig. 1 where the
simulations-based results are compared with the theoretical
value σ2

ĥ
given by (30). Two cases were considered: DCAC

ratios of 0.56 and 0. The theoretical results do not depend
upon the DCAC ratio while in case of the simulations, the
results are virtually indistinguishable (they do not show up
in the Fig. 1). It is seen that the agreement between the
theoretical and simulations results is quite good.

5.2. Example 2: Training power allocation
Here too we again consider the example of Sec. 5.1 (Ex-
ample 1) except that the training-to-information sequence
power ratio (TIR) is now varied to yield different values of β
(see (31)). For a fixed received signal SNR (= (σ2

b +σ2
c )/σ2

v
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Figure 4. Optimal β versus received signal SNR, under three
different criteria.

under (H4)) with σ2
b +σ2

c = 1, we investigate the choice of β
(defined in (31)) following Sec. 4. Our approach proposed
in Sec. 4 is to choose β to maximize SNRd(β) defined in
(39). We maximize the theoretical expression for SNRd(β)
numerically by calculating it for different values of β with
σ2

b + σ2
c = 1. Fig. 2 shows plots of SNRd(β) versus β for

a fixed T =400 symbols and varying SNR’s. In this fig.,
β was varied in steps of 0.05 . It is seen that as received
signal SNR increases, the optimum β increases too. Higher
β implies that a higher fraction of transmitted power is
allocated to training leading to more accurate channel es-
timates (with smaller estimation variance). Intuitively, for
higher SNR’s it pays to achieve more accurate channel es-
timates in order to achieve a lower effective noise power σ2

w
(see (37)). On the other hand, when SNR is low (i.e. noise
variance σ2

v is high), improving channel estimate does not
have much effect on the effective noise power σ2

w. The BER
performance versus β based on simulation results (averaged
over 500 Monte Carlo runs) is shown in Fig. 3 using a linear
MMSE equalizer based on the channel estimate, equalizer
length 11 and equalization delay 5, for a fixed record length
of T = 400 symbols and varying SNR’s. In Fig. 4 we com-
pare the optimum values of β for a given received signal
SNR for three cases: that maximizing theoretical SNRd(β)
(labeled “theoretical” in Fig. 4), that maximizing the BER
based on linear MMSE (labeled “linear MMSE equal.” in
Fig. 4), and that maximizing the BER based on the Viterbi
detector (labeled “Viterbi det.” in Fig. 4). It is seen that
the three curves follow the same trend, although they are
not identical.
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