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ABSTRACT

The issue of separating linear mixtures of independent linearly
modulated signals steming from unknown digital communication
systems is addressed. The baud-rates of the various transmitted
signals are in particular unknown and possibly different. There-
fore, sampled versions of the received signal are cyclostationary
sequences. Despite the non-stationary environment of the data,
Godard’s algorithm is shown to achieve separation in rather gen-
eral contexts.

1. INTRODUCTION

The context of this work is the one of multi-users passive listen-
ing. Specifically, K unknown transmitters are supposed to share a
common band of frequencies, and the goal of the receiver is to ex-
tract as much information as possible on the K transmitted signals
(e.g. modulation types, baud-rates, carrier frequencies, symbol
constellations, etc.). The receiver is assumed to haveM -antennas
(M ≥ K): an appropriate linear combination of the data can be
looked for in order to separate the various transmitted signals. This
crucial step reduces the initial problems to K (much simpler) prob-
lems. In this paper, we assume that the K transmitted signals are
linearly modulated by modulus 1 circular independent identically
distributed sequences (with possibly different baud-rates and car-
rier frequencies), and address their blind separation.

In the context of blind source separation (BSS), the observed
data y(n) is filtered by a multi-input filter g(z) (let r(n) be the
output), this latter been chosen so as to optimize a certain func-
tion depending on statistics of r. Such functions have been set
forth, which ensure separation at their optima. These functions
are called contrasts. Global approaches propose to extract the K
components at a time (the filter g(z) is multi-output): see the in-
teresting paper of Castella et al. [1] and the references therein.
Iterative approaches aim at extracting a contribution of a single
source (g(z) is mono-output); thanks to a deflating step, the other
contributions are extracted one after the other (see e.g. [2], [3]).
If the source signals are independent identically distributed (i.i.d.)
sequences with negative kurtosis, then it has been shown that the
kurtosis of r ([4]) defined by c4(r(n))

(E(|r(n)|2))2
(c4(x) stands for the

fourth-order cumulant of x) and the Godard constant modulus cost
function E(|r(n)|2 − 1)2) ([5]) allow to extract one of the source
signal. These results have been generalized to the context of sta-
tionary source signals in [6].

In this paper, we focus on iterative approaches. The results
of [4], [5] and [6] cannot be used in our context, because for
a general configuration of the baud-rates, the received sampled

signal is not stationary, but cyclostationary (the cyclic frequen-
cies depend on the baud rates of the K source signals). The sta-
tistical properties of output signal r(n) are thus time-dependent,
and it has been shown recently in [7] that the minimization of

<c4(r(n))>

(<E(|r(n)|2)>)2
allows to extract a filtered version of one of the

source signal. Here, < . > stands for the time average operator
defined by < un >= limN→∞ 1

N

PN−1
n=0 un. However, the es-

timation < c4(r(n)) > requires the prior estimation of the cyclic
frequencies of the received signal (see section 2).

In this paper, we rather study the behavior of the Godard cost
function J(r) defined by

J(r(n)) =< E
`|r(n)|2 − 1

´2
> (1)

which, in contrast with the above cost function, can be obviously
consistently estimated by 1

N

PN
n=1(|r(n)|2 −1)2 where N repre-

sents the sample size. We show that the minimization of J over g
allows us to achieve separation in rather general contexts.

General notations. If (x(n))n∈Z is a discrete-time cyclosta-
tionary sequence, we denote by R

(α)
x (τ) the cyclic correlation co-

efficient at lag τ of signal x at cyclic frequency α, and by S
(α)
x (e2iπν)

the corresponding cyclic spectrum

2. PROBLEM STATEMENT.

We assume that for any k, k = 1, . . . , K , the k-th transmitted sig-
nal is obtained by linearly modulating a centered and normalized
i.i.d. sequence of circular symbols having modulus 1. The corre-
sponding symbol period is denoted by Tk, and it is assumed that
the band of frequencies of the k-th transmitted signal is [− 1+γk

2Tk
, 1+γk

2Tk
]

where the so-called excess bandwith factor γk belongs to [0, 1).
The propagation channels between each transmitter and the re-
ceiver are assumed to be frequency selective. The continuous-time
received signal is sampled at a period Te which is supposed to
satisfy the Shannon condition. Under these assumptions, the M -
dimensional discrete-time received signal y(n) can be written as

y(n) =
X

k

Hks(n − k) = [H(z)]s(n) (2)

where the components s1(n), . . . , sK(n) of vector s(n) repre-
sent the sampled versions of the K transmitted signals, and where
H(z) =

P
k∈Z

Hkz−k is the transfer function of the K-inputs /
M outputs discrete time equivalent channel. Each signal sk is cy-
clostationary, and its second order cyclic frequencies are 0, αk,−αk
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where αk = Te
Tk

. In the following, we assume without restriction
that source signals (sk)k=1,...,K are normalized in such a way that

∀k R(0)
sk

(0) =< E|sk(n)|2 >= 1. (3)

The observed data y(n) is filtered by a MISO filter g(z),
and we denote by r(n) the corresponding output given r(n) =
[g(z)]y(n). Signal r(n) is of course cyclostationary, and its set of
second order cyclic frequencies is included in the set I given by

I = {0,±α1, ...,±αK} with αk = Te/Tk.

In the following, we also denote I∗
+ the set of all strictly positive

cyclic frequencies. In particular, the sequence (E(|r(n)|2))n∈Z

can be expanded as E(|r(n)|2) =
P

α∈I R
(α)
r (0)e2iπnα. Prior

to studying the Godard cost function, we explain why the con-
trast function <c4(r(n))>

(<E(|r(n)|2)>)2
is difficult to use in practice. In-

deed, the fourth-order cumulant c4(r(n)) of r(n) can be written
as c4(r(n)) = E(|r(n)|4) − 2(E(|r(n)|2))2 (r(n) is circular be-
cause each transmitted symbol sequence is circular)). Hence,
< c4(r(n)) > coincides with < E(|r(n)|4 > −2 < (E(|r(n)|2))2 >.
Using the Parseval identity, and the fact that |R(−α)

r (0)| = |R(α)
r (0)|,

it yields

< (E(|r(n)|2))2 >=
X
α∈I

|R(α)
r |2 = |R(0)

r |2 + 2
X

α∈I∗
+

|R(α)
r |2.

Hence

< c4(r(n)) >=< E(|r(n)|4) > −2(|R(0)
r |2 + 2

X
α∈I∗

+

|R(α)
r |2)

(4)
The first term of the right hand side of (4) and R

(0)
r =< E(|r(n)|2) >

can be consistently estimated by means of 1
N

PN
n=1 |r(n)|4 and

1
N

PN
n=1 |r(n)|2 respectively, but the estimation of the third term

needs the prior estimation of the strictly positive cyclic frequen-
cies. Due to the well-known difficulty of estimating these frequen-
cies, we prefer to focus on an other approach, namely we proceed
to the analysis of the cost function J(r).

In order to express cost function J(r) in a convenient way,
we set f(z) = g(z)H(z). r(n) can thus be written as r(n) =PK

k=1[fk(z)]sk(n). In the following, we set

||fk||2 =

Z 1/2

−1/2

|fk(e2iπν)|2S(0)
sk

(e2iπν) dν (5)

Notice that r(n) is a filtered version of a source signal sk1(n) if
and only ‖fk‖ = 0 ∀k �= k1. We now expand r(n) as

r(n) =

KX
k=1

||fk||s̃k(n) (6)

Signal s̃k(n) is defined by s̃k(n) = [f̃k(z)]sk(n), where f̃k(z)

represents the unit norm filter given by f̃k(z) = fk(z)
||fk|| . As ‖f̃k‖ =

1, we have: < E(|s̃k(n)|2) >= 1 for any k. From the statistical
independance of signals (s̃k)k=1,...,K and the identity (4), we de-
duce that

J(r) =

KX
k=1

‖fk‖4β(s̃k) − 2

KX
k=1

‖fk‖2 + 1

+
X

k1<k2

‖fk1‖2‖fk2‖2�(s̃k1 , s̃k2)

where

�(s̃1, s̃k2) = 4

0
@1 + 2

X
α∈I∗

+

Re(R(α)
s̃k1

(0)R
(α)
s̃k2

(0))

1
A . (7)

and
β(s̃k) =< c4(s̃k(n)) > +2 + 4|R(αk)

s̃k
(0)|2. (8)

Equation (4) shows that β(s̃k) =< E|s̃k(n)|4) >. As < E|s̃k(n)|2) >=
1, the Jensen inequality implies that β(s̃k) ≥ 1.

Proving that the argument-minima of J ”separate” one of the
sources requires to investigate (7). This optimization problem de-
pends both 1) on the norms ‖fk‖ and 2) on the normalized func-
tions f̃k. What makes the problem intricate is that the β and � both
depend on the f̃k.

3. RESULTS

3.1. First case: the sources have pair-wise different baud-rates

For each strictly positive cyclic frequency α ∈ I∗
+, the term Rα

s̃k1
Rα

s̃k2
vanishes if k1 �= k2. Therefore, the expression (7) reduces to

J(r) =

KX
k=1

‖fk‖4β(s̃k) + 4
X

k1<k2

‖fk1‖2‖fk2‖2 (9)

− 2

KX
k=1

‖fk‖2 + 1 (10)

We now define b as

b = inf
k,‖f̃k‖=1

β([f̃k(z)]sk(n)) = inf
k,‖f̃k‖=1

< E(|[f̃k(z)]sk(n)|4) >

(11)
We make the purely technical assumption that the minimum over
(k, f̃k) is reached for a at least a certain pair (k0, f̃

∗
k0) (as the set

of all unit norm filter is not compact, the existence of f̃∗
k0 is not

guaranteed). As < E(|[f̃k(z)]sk(n)|4) > ≥ 1 for any unit norm
filter f̃k, we get immediately that b ≥ 1. In order to face the
minimization of J , we notice that

J(r) ≥ M1(‖f1‖, ..., ‖fK‖) (12)

where M1(‖f1‖, ..., ‖fK‖) is defined by

M1(‖f1‖, ..., ‖fK‖) = b

KX
k=1

‖fk‖4 + 4

KX
k1<k2

‖fk1‖2‖fk2‖2

−2

KX
k=1

‖fk‖2 + 1.

Lemma 1 The stationary points of M1are given by

∀k, ‖fk‖2 =

8<
:

0
or

1
b+2(P−1)

where P is the number of non-zero components of the vector
(‖f1‖, ..., ‖fK‖). The value reached at these points is 1− P

2((P−1)+b)2
,

which is a growing function of P if b < 2. In this case, the
minimum of M1 is equal to 1 − 1

b
, and is reached if and only if

‖fk‖2 = 1
b
δ(k − k1) for some index k1.
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Corollary 1 If b < 2, the minimum of J(r) is equal to (1 − 1
b
),

and is reached if and only filter f(z) for which r(n) = [f(z)]s(n)

satisfies ‖fk‖2 = 1
b
δ(k − k0) and b = β([f̃k0(z)]sk0(n)), where

f̃k0(z) =
fk0 (z)

‖fk0‖ .

We first establish that minf(z) J(r) = 1 − 1
b
. For this, we re-

mark that Lemma 1 and inequality (12) imply that J(r) ≥ 1 − 1
b
.

Moreover, let (k0, f̃k0) be a pair for which b = β([f̃k0(z)]sk0(n).
We denote fk0 the filter fk0(z) =

√
b−1f̃k0(z), and by r0(n)

the signal r0(n) = [fk0(z)]sk0(n). Then, it is easily seen that
J(r0) = 1 − 1

b
, thus showing that minf(z) J(r) = 1 − 1

b
.

In order to complete the proof, we note that J(r) is minimum
if and only if function M1 is minimum, a condition which implies
that ‖fk‖2 = 1

b
δ(k − k0) and b = β([f̃k0(z)]s̃k0(n)).

This result proves that if b < 2, then the minimization of the
Godard cost function achieves the extraction of one of the users as
soon as the sources have pair-wise different baud-rates.

The point to inspect is: is the condition b < 2 true? We carry
out the study for any k the minimum of
< E(|[f̃(z)]sk(n)|4) > over the set of all unit norm filters f̃(z). If
Te coincides with one of the (Tk)k=1,...,K (say T1), then (s1(n))n∈Z

is stationary: it is indeed a filtered version of the symbol (a1(n))n∈Z

transmitted by user 1. The minimum of E(|[f̃(z)]s1(n)|4) over the
set of unit norm filters is merely 1 and is reached for the filters for
which [f̃(z)]s1(n) coincides with a delayed version of the symbol
sequence. In this context, b is of course equal to 1. In general,
however, b > 1 because the symbol period Te is unlikely to be
with one of the Tk’s. In order to address the general case, we give
an alternative expression of < E(|[f̃(z)]sk(n)|4) > by taking ad-
vantage of the structure of the sources. For each unit norm filter
f̃(z) =

P
l∈Z

f̃lz
−l, it is possible to link s̃k(n) = [f̃(z)]sk(n)

to a continuous-time signal. For this, we denote by sa,k(t) the
continuous-time signal transmitted by the k-th user. We recall
that discrete-time signal sk(n) is defined by sk(n) = sa,k(nTe),
and that sa,k(t) is given by sa,k(t) =

P
m ak(m)pa,k(t − mTk)

where (ak(m))m∈Z represents the symbol sequence and pa,k is
the shaping filter impulse response. It is straightforward to check
that s̃k(n) = s̃a,k(nTe) where the continuous-time signal s̃a,k(t)
is defined by s̃a,k(t) =

P
m ak(m)fa,k(t − mTk). The func-

tion fa,k(t) is given by fa,k(t) =
P

l f̃lpa,k(t − lTe). The sup-
port of the Fourier transform of function fa,k(t) is included in
[− 1+γk

2Tk
, 1+γk

2Tk
]. As Te is assumed to satisfy the Shannon con-

dition, ‖f̃‖ = 1 implies that 1
Tk

R
R
|fa,k(t)|2dt = 1. It can

be shown that < c4(s̃n) >= c4(ak(n)) 1
Tk

R
R
|fa,k(t)|4dt. This

equality holds true as soon as Te is none of the values
Tk, Tk/2, Tk/3, Tk/4 (these special cases have to be treated sepa-
rately; this point is not developed here). We have assumed that the
symbols have unit modulus, hence c4(ak(n)) = −1. In the same
manner, we have

R
(αk)
s̃k

(0) =
1

Tk

Z
R

|fa,k(t)|2e−i2πt/Tkdt. (13)

Therefore, both < c4(s̃n) > and R
(αk)
s̃k

(0) do not depend on the
value of Te. More information on this fact can be found in [8].

Finally, β(s̃k) can be expressed as β(s̃k) = ϕ(fa,k, Tk) where
we have set:

ϕ(f, T ) =
−T

R
R
|f(t)|4dt + 4| R

R
|f(t)|2e−i2πt/T dt|2

(
R

R
|f(t)|2dt)2

+ 2.

(14)
( notice that 1

Tk

R
R
|fa,k(t)|2dt = 1). This shows that the lower-

bound of β(s̃k) is the lower-bound of ϕ(f, Tk) over all the pos-
sible f , i.e. -summable functions whose Fourier Transform f̂ has
a support included in (− 1+γk

2Tk
, 1+γk

2Tk
). After a straight-forward

change of variable, this lower-bound is readily seen not to depend
on Tk, but only on the excess bandwith factor γk. We denote
Φ(γk) this lower-bound, which, of course, is a decreasing function
of γk. Letting γmax be the maximum of all the excess bandwidth
factors, it yields

b = Φ(γmax). (15)

We have not been able, so far, to characterize Φ analytically. How-
ever, the integrals in ϕ can be expressed as sums due to the band-
limited character of the functions f . Hence the minimization over
square summable functions coincides with the minimization of a
criterion depending on a series. This makes the computation of Φ
possible. In particular, it can be shown that if the Fourier transform
of f vanishes outside the interval [− 1+γ

2
, 1+γ

2
], then ϕ(f, T ) is

−(1+γ)

P
n∈Z

|f(n/2)|4
(
P

n∈Z
|f(n)|2)2 +4

|P
n∈Z

|f(n/2)|2e−2iπn/(1+γ)|2
(
P

n∈Z
|f(n)|2)4 +2

where (f(n))n∈Z is the square summable sequence defined by
f(n) = f( nT

1+γ
) and f(n/2) is the ”interpolated” sequence de-

fined by f(n/2) =
R 1/2

−1/2
(
P

n∈Z
e−2iπnνf(n))e2iπνn/2 dν. The

left part of the figure shows the graph of Φ as a function of the
excess bandwidth factor. It is clear that Φ(0) < 2, so that for any
γ > 0, then, b < 2.

Remark 1 It follows from Eq. (15) and Corollary 1 that the ex-
tracted source is the one having the biggest excess bandwidth fac-
tor.

3.2. Second case: all the sources share a common baudrate

We let T be the common symbol period. Contrary to the previous
section, the terms � do not reduce to a constant:

�(s̃k1 , s̃k2) = 4
“
1 + 2�e

“
R

(α)
s̃k1

(0)R
(α)
s̃k2

(0)
””

(16)

where we set α = Te/T . Cancealing the angles of the R
(α)
s̃k

(0)s
yields the inequality J(r) ≥ J1(r) with

J1(r) =

KX
k=1

β(s̃k)‖fk‖4 − 2

KX
k=1

‖fk‖2 + 1

+4
X

k1<k2

(1 − λ(s̃k1)λ(s̃k2) ‖fk1‖2‖fk2‖2

where we have set λ(s̃k) = |R(α)
s̃k

(0)|.
The main difficulty the minimization of J1 is based on is that

the β(s̃k) and λ(s̃k) are related with one another - this may be
seen in (14). At the first sight, an idea consists in uniformely lower
(respectively upper) bounding the β(s̃k) (respectively λ(s̃k):

β(s̃k) ≥ b = Φ(γmax) (17)
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(as is seen in the previous section); as far as λ(s̃k) is concerned, it
can easily be proved (this is a straight-forward application of the
Cauchy-Schwartz inequality) that

Lemma 2

|R(α)
s̃k

(0)| ≤ 1

2
. That is λ(s̃k) ≤ 1

2
. (18)

The rough lower-bound of J1 hence obtained can be shown
not to provide any positive result concerning the minimization of
J(r). The point making the uniform bounds (17) and (18) ineffi-
cient is that b and 1

2
are not reached for the same filters. Taking into

account that β(s̃k) and λ(s̃k) depend on one another may tighten
the minoration. In order to specify this point, we show that there
exist couples (β∗, λ∗) verifying λ∗ < 1/2 and

If β(s̃k) ≤ β∗ then λ ≤ λ∗.

Up to now, we have failed to provide any results when the num-
ber of sources is bigger than two. However, for the case of two
sources, the following holds:

Result 1 P = 2 (i.e. 2 sources). If γmax ∈ [0.05; 0.95], the min-
imum of J(r) is equal to 1 − 1

b
= 1 − 1

Φ(γmax)
. Moreover, this

lower-bound is reached if and only if filter f(z) for which r(n) =

[f(z)]s(n) satisfies ‖fk‖2 = 1
b
δ(k−k0) and b = β([f̃k0(z)]sk0(n)) =

Φ(γmax), where f̃k0(z) =
fk0 (z)

‖fk0‖ .

The proof is rather technical and is being written in a complete
paper to be soon submitted.

3.3. Third case: groups of different baud-rates

This section provides a more general result. We call group of
sources a set of sources having a common baud-rate. As the previ-
ous developments suggest, we are not able up to now to say much
when a group of sources has more than two sources. On the con-
trary, the following holds

Result 2 If all the groups of sources have at most two sources,
then J(r) ≥ 1 − 1

b
with b = Φ(γmax). Moreover, the equality

holds if and only if filter f(z) for which r(n) = [f(z)]s(n) satisfies
‖fk‖2 = 1

b
δ(k − k0) and b = β([f̃k0(z)]sk0(n)) = Φ(γmax),

where f̃k0(z) =
fk0 (z)

‖fk0‖ .

This says that the arguments minima of J are filters capable of
extracting one of the sources having the biggest excess band-width
factor.

4. SIMULATIONS

We denote by ck,l(n) the contribution of the k-th source on the
l-th sensor at time n, and c̃k,l(n) its estimated version provided by
the source separation algorithm. The performance criterion for the
source k is defined as:

Ck =

NX
l=1

< |c̃k,l(n) − ck,l(n)|2 >PK
k=1 < |ck,l(n)|2 >

(19)

On figure(b), the criterion for the first extracted source is plotted
for 100 trials. The number of sources is K = 2 and the number
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(b) Contrast performance

of sensors M = 3. The baud-rates are the same. At each trial, the
characteristics of the sources (QPSK or 8-PSK, excess-bandwidth
in {0.5 , 0.7 , 0.3}), the propagation channels (Rayleigh with 3
paths) are randomly chosen. The estimation of J(r) relies on 3000
time-units. The results obtained confirm that the minimization of
Godard’s function achieves separation.
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