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ABSTRACT

This paper considers a robust mean-square error (MSE) equal-

izer design problem for flat-fading multiple-input multiple-

output (MIMO) channels with imperfect channel and noise

information at the receiver. When the channel state informa-

tion (CSI) and the noise covariance are known exactly at the

receiver, a minimum mean square error (MMSE) equalizer

can be employed to estimate the transmitted signal. How-

ever, in actual systems, it is necessary to take into account

channel and noise estimation errors. We consider here a

worst-case equalizer design problem where the goal is to

find the equalizer minimizing the equalization MSE for the

least favorable channel model within a neighborhood of the

estimated model. Lagrangian optimization is used to con-

vert this min-max problem into a convex min-min problem

over a convex domain which is solved by interchanging the

minimization order.

1. INTRODUCTION

MIMO wireless communication systems have proved at-

tractive due to their ability to exploit spatial diversity and

multiplexing to achieve high data rate communications. Al-

though various MIMO equalization methods have been pro-

posed, one limitation of most existing techniques is that they

assume that the CSI and noise distribution are known per-

fectly at the receiver. However, in practice, channel and

noise estimates are subject to uncertainties. We consider in

this paper the design of a worst-case MSE equalizer for an

imperfectly known MIMO flat-fading channel. We seek to

find the optimal equalizer minimizing the MSE for the least

favorable model in a neighborhood of the estimated model.

Following the approach of [1], the neighborhood is formed
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by placing a bound on the Kullback-Leibler (KL) diver-

gence between the actual and estimated channel models. In

this respect, note that the use of the KL divergence is rather

natural as a metric for model mismatch since it is commonly

used by statisticians for fitting statistical models, and used

as the natural geometric “distance” between systems [2].

Equalizers designed in this manner can guarantee a fixed

level of performance for any realization of actual channels

in the neighborhood of the estimated channel. Then the de-

sign of a robust MSE equalizer reduces to the solution of

a min-max problem. To solve this min-max problem, fol-

lowing an approach proposed in [3] for solving a regular-

ized robust least-squares problem, we employ Lagrangian

optimization to convert the min-max problem into a con-

vex min-min problem over a convex domain. By partial

minimization this problem reduces to a simple scalar mini-

mization problem for the Lagrange multiplier which can be

solved numerically by using the steepest descent method.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider here the case of flat-fading MIMO channels

with nT transmit and nR receive antennas and assume that

nR ≥ nT , so that the complex nR×nT matrix H represent-

ing the channel in the baseband domain has full column rank

with probability one. So we assume below that H has full

column rank. Given a nR×nT matrix channel H, the noisy

observation is given by y = Hx+v, where x ∼ N (0, InT
)

is the symbol vector transmitted during a signalling period

and v ∼ N (0,R) is the noise vector. It is assumed that

R is positive definite, so that the noise affects all observa-

tion components. When the channel matrix H and the noise

covariance R are known perfectly at the receiver end, the

MMSE equalizer is given by F = HH(HHH + R)−1.

When the estimated channel Ĥ and noise covariance
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matrix R̂ are different from the actual H and R, the MSE

objective function can be expressed as

J(F,H�,R) = tr
{

(I − F(Ĥ + H�))

(I − F(Ĥ + H�))H + FRFH
}

, (2.1)

where H� = H − Ĥ. We use the KL divergence to mea-

sure the “distance” between the actual model (H,R) and

the estimated model (Ĥ, R̂), which takes the form

D(f(y,x), f̂(y,x)) =
∫ ∫

ln
[f(y,x)

f̂(y,x)

]
f(y,x)dxdy.

By substituting the Gaussian probability densities of the ac-

tual and estimated models, it is easy to show (see e.g., [4])

that the KL divergence admits the expression

D(H,R; Ĥ, R̂) = tr{HH
�R̂−1H�}

+tr{R̂−1R − InR
} − ln det(R̂−1R) . (2.2)

Let

B = {(H�,R) : D(H,R; Ĥ, R̂) ≤ c} (2.3)

denote the ‘ball’ formed by the models whose KL diver-

gence with respect to the nominal model (Ĥ, R̂) is less than

or equal to c. The robust MSE equalizer design problem

with a KL divergence bound can be formulated as a min-

max problem of the form

min
F

max
(H�,R)∈B

J(F,H�,R) . (2.4)

3. ROBUST MSE EQUALIZER DESIGN

To examine the min-max problem, we first consider the nor-

malized channel matrix Ĥs = R̂−1/2Ĥ, where R̂1/2 sat-

isfies R̂ = R̂1/2(R̂1/2)H . Then we perform the singu-

lar value decomposition Ĥs = U[ΣT 0T
(nR−nT )×nT

]T V,

where Σ = diag{σi , 1 ≤ i ≤ nT } with σ1 ≥ σ2 ≥
. . . σnT

> 0. The main result of our paper is as follows.

Theorem 1 The robust MSE equalizer Frob solving the min-
max problem (2.4) has the structure

Frob = VH
[

F̄rob
1 0nT ×(nR−nT )

]
UHR̂−1/2 , (3.1)

where depending on the value of the KL divergence bound
c, F̄rob

1 and the least favorable model (Hmax
� ,Rmax) take

the following form.

i) For c ≥ ∑nT

i=1 σ2
i , F̄rob

1 = 0nT ×nT
and the least-

favorable channel model (Hmax
� ,Rmax) is an arbi-

trary matrix pair in B.

ii) For c <
∑nT

i=1 σ2
i , the robust equalizer F̄rob

1 is a di-
agonal matrix of the form

F̄rob
1 = diag{f rob

1 , f rob
2 , . . . , f rob

nT
} (3.2)

with f rob
i = fi(λ0), where for 1 ≤ i ≤ nT , the

function fi(λ) can be expressed as

fi(λ) = 3

√
−qi

2
+

√
(
qi

2
)2 + (

pi

3
)3w2

+ 3

√
−qi

2
−

√
(
qi

2
)2 + (

pi

3
)3w − σi

3
, (3.3)

with

pi = −σ2
i

3
− 1 − λ(σ2

i + 1)

qi =
σi

3
[1 + λ(σ2

i + 1)] + λσi +
2σ3

i

27
(3.4)

and w = exp(j2π/3), and where the Lagrange mul-
tiplier λ0 is obtained numerically by minimizing the
scalar convex function C(λ) in (3.18) using the steep-
est descent method. Given λ0 and Frob, the least fa-
vorable model (Hmax

� ,Rmax) can be expressed as

Hmax
� = −(λ0R̂−1 − FrobH

Frob)−1

FrobH
(InT

− FrobĤ)

Rmax = (R̂−1 − 1
λ0

FrobH
Frob)−1 . (3.5)

To solve the min-max problem (2.4), we first convert the

min-max problem into a min-min problem by using the the-

ory of Lagrangian multipliers. Since J(F,H�,R) and the

neighborhood B are convex in (H�,R), the maximum of

J is achieved at the boundary of B, and a local maximum is

necessarily a global maximum. Then the Lagrangian asso-

ciated with the maximization of J with respect to (H�,R)
under the constraint D(H,R; Ĥ, R̂) = c takes the form

L(F,H�,R, λ) = J(F,H�,R)+λ(c−D(H,R; Ĥ, R̂)).

Then, according to Proposition 3.2.1 of [5], (H�,R) will

be a local maximum of J under the equality constraint if

there exists a finite Lagrange multiplier λ such that the fol-

lowing sufficient conditions are satisfied:

∇H�L = −2
(
FH

[
InT

−F(Ĥ+H�)
]
+λR̂−1H�

)
= 0

(3.6)

∇RL = FHF − λ(R̂−1 − R−1) = 0 (3.7)

∇λL = c − D(H,R; Ĥ, R̂) = 0 (3.8)
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[ ∇2
H�L ∇2

H�,RL

∇2
R,H�L ∇2

RL

]
=

[
2(FHF − λR̂−1) 0nT ×nR

0nR×nT
−λR−2

]
< 0 . (3.9)

Note that the condition (3.9) is is equivalent to

λ > ||FR̂1/2||22 , (3.10)

where ||M||22 denotes the largest singular value of MMH .

In this case, the conditions (3.6) and (3.7) yield

Hmax
� (λ) = −(λR̂−1 − FHF)−1FH(InT

− FĤ)

Rmax(λ) = (R̂−1 − 1
λ
FHF)−1 . (3.11)

Then we form the “dual” function

G(F, λ) = L(F,Hmax
� (λ),Rmax(λ), λ)

= λ
[
c + tr

{
(InT

− FĤ)H(λInT
− FR̂FH)−1

(InT
− FĤ)

} − ln det(I − 1
λ
FR̂FH)

]
. (3.12)

If we can find λ∗ > ||FR̂1/2||22 minimizing the dual func-

tion, the maximization problem in (2.4) is equivalent to a

minimization problem, i.e., max(H�,R)∈B J(F,H�,R) =
minλ>||FR̂1/2||22 G(F, λ).

We have therefore transformed the original min-max prob-

lem into the equivalent min-min problem

min
(F,λ)∈D

G(F, λ) (3.13)

over the domain D �
= {(F, λ) : λ > ||FR̂1/2||22}. The set

D is convex [6]. Since G(F, λ) is obtained by maximizing

the Lagrangian function L(F,H�,R, λ) which is convex

in (F, λ), by invoking Proposition 1.2.4 c) of [7], we con-

clude that the function G(F, λ) is convex over D. So we

have reduced the robust MSE equalizer design problem to a

conventional convex minimization problem.

To perform this minimization, we form the partitioned

matrix F̄
�
= VFR̂1/2U = [F̄1 F̄2], where F̄1 and F̄2 have

size nT × nT and nT × (nR − nT ). Then, we have

G(F, λ) = λ
[
c + tr

{
AHB−1A

} − ln det(
1
λ
B)

]
,

where A = InT
− F̄1Σ and B = λInT

− F̄F̄H . G is min-

imized by setting F̄2 = 0. For this choice the function G
only depends on F̄1. Then, the first-order Gateaux deriva-

tive (see [7, p. 17] for a definition of the Gateaux deriva-

tive) of G(F̄1, λ) with respect to F̄1 in the direction of Y1

is given by

�F̄1,Y1
G(F̄1, λ) = 2λtr

{[
F̄H

1 B−1AAHB−1 −

ΣAHB−1 + F̄H
1 B−1

]
Y1

}
. (3.14)

Since in this case B is invertible, we have �F̄1,Y1
G = 0

for all Y1 if and only if

F̄H
1 B−1AAH − ΣAH + F̄H

1 = 0 . (3.15)

Multiplying (3.15) on the left by λInR
− F̄H

1 F̄1 we find

(F̄H
1 − λΣ)(InR

− F̄1Σ)H + (λInR
− F̄H

1 F̄1)F̄H
1 = 0 .

(3.16)

For a convex function G(F̄1, λ) over the convex domain

D, if we can find (F̄rob
1 , λ0) ∈ D, which satisfies (3.16),

then (F̄rob
1 , λ0) will be a global solution of the minimization

problem. In order to solve (3.16), we assume that F̄1 =
diag{fi, 1 ≤ i ≤ nT }. In this case, the pair (F̄1, λ) will be

in the domain D provided λ > f2
i for all 1 ≤ i ≤ nT . Then

(3.16) becomes decoupled cubic equations of the form

fi(f2
i + fiσi − 1) − λ

(
fi(σ2

i + 1) − σi

)
= 0 . (3.17)

The root locus of this third order system is shown in Fig. 1.

The roots fi(λ) corresponding to the left and right branches

go from 1/2[−σi ± (σ2
i + 4)1/2] to ∞ as λ → ∞, but the

root corresponding to the middle branch goes from fi = 0
at λ = 0 to σi/(σ2

i + 1) as λ → ∞. We can prove [6] that

a root fi is located in the domain λ > f2
i only if it belongs

to the interval (0, σi/(σ2
i + 1)), so that only the middle

branch of the root locus yields a solution fi(λ) of the cubic

equation (3.17) such that the diagonal equalizer F̄1 is in the

domain D.

XX X
0 σi

σ2
i +1

1
2 [−σi + (σ2

i + 4)1/2]1
2 [−σi − (σ2

i + 4)1/2] Re(f)

Im(f)

Fig. 1. Root locus of equation (3.17): poles and zeros are

represented by x’s and o’s.

Then, let

C(λ) = min
F̄ : λ>||F̄||22

G(F̄, λ) = λ
[
c +

nT∑
i=1

(1 − fi(λ)σi)2

λ − f2
i (λ)

−
nT∑
i=1

ln(1 − f2
i (λ)
λ

)
]

(3.18)

denote the function obtained by partial minimization of G
with respect to F̄, where fi(λ) denotes the root of (3.17)

corresponding to the middle branch of the root locus. Since

G(F̄, λ) is convex over D, according Proposition 2.3.6 of
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[7], the function C(λ) obtained by partial minimization of

G(F̄, λ) with respect to F̄ is a convex in λ.

In order to find the minimum of C(λ), we need to ex-

plore the graph of C(λ) depending on the value of the un-

certainty bound c. We examine first the behavior of C(λ) in

the vicinity of λ = 0. Close to λ = 0, we can expand the

root locus solution of (3.17) starting at fi = 0 as

fi(λ) = µ1λ + µ2λ
2 + . . . . (3.19)

Substituting (3.19) into (3.17) and matching coefficients of

λ and λ2 yields µ1 = −µ2 = σi. So for small values of

λ, we have fi(λ) = σiλ − σiλ
2 and limλ→0

dC
dλ = c −∑nT

i=1 σ2
i . Then depending on the value of the uncertainty

bound c, we can identify two different cases.

1) When c ≥ ∑nT

i=1 σ2
i , the convex function C(λ) is

minimized when λ = 0, so that f rob
i = 0 for 0 ≤

i ≤ nT and the least favorable channel model (Hmax
� ,Rmax)

is an arbitrary matrix pair in B.

2) When c <
∑nT

i=1 σ2
i , C(λ) is minimized at a point

λ0 > 0. λ0 can be found numerically by using the

method of steepest descent. Then the least favorable

model (Hmax
� ,Rmax) is obtained by substituting λ0

and F̄rob
1 inside (3.11).

This completes the proof of Theorem 1.

4. NUMERICAL SIMULATIONS

In the simulations shown below, we assume uncoded QPSK

symbols are transmitted over a random flat fading MIMO

channel with independent normalized complex Gaussian en-

tries and the estimated channel noise covariance R̂ = σ2
vInR

.

To find the least-favorable channel model, we apply the nor-

malized KL divergence bound
D(H,R,Ĥ,R̂)

tr{ĤHR̂−1Ĥ} ≤ b. In the

plot, the SNR (in dB) is defined as the total received sig-

nal power over the total noise power. Fig 2 compares the

MSE performance of robust equalizers and MMSE equal-

izers over their corresponding least-favorable channel mod-

els for a 2-input-4-output system when b takes the values

0.01, 0.05 and 0.1. As we expected, the figure shows that

the robust equalizer Frob over its worst-case channel model

(Hmax
� ,Rmax) achieves a smaller MSE than the MMSE

equalizer FMMSE = ĤH(ĤĤH + R̂)−1 over its worst-

case channel model (HMMSE
� ,RMMSE).

5. CONCLUSION

We have considered the design of robust MSE equalizers

for MIMO communications systems with imperfect channel

and noise knowledge. Our results are applicable to channels
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Fig. 2. MSE performance of robust equalizers Frob and

MMSE equalizers FMMSE for their corresponding least fa-

vorable channel models.

with nT ≤ nR which have full column rank. The design

problem is formulated as a min-max problem where the goal

is to find the equalizer minimizing the equalization mean

square error for the least favorable channel model within KL

divergence bound. Lagrangian optimization is used to trans-

form the min-max problem into a convex min-min problem

over a convex domain, to which standard convex optimiza-

tion methods apply.
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