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ABSTRACT

We consider linear detectors for MIMO systems, i.e., multi-

antenna systems where linear equalizers are employed to

remove spatial interference. We analyze the behavior of

linear equalizers through outage probability. The MMSE

equalizer was found to behave in unexpected ways. Con-

trary to the usual intuition, the performance of MMSE and

zero-forcing equalizers may not coincide at high-SNR. This

is especially true at low spectral efficiencies, where MMSE

equalizer may achieve full spatial diversity.

1. INTRODUCTION

Multiple-input multiple output (MIMO) systems experience

interference between signals transmitted simultaneously from

transmit antennas. Various detection methods can be used

to remove the spatial interference.

Performance of nulling and cancelling detectors have

been studied previously (see [1, 2, 3] among others). Lin-

ear equalizers are less complex and it is known that their

performance is inferior to nulling and cancelling methods.

However, [4] reports that some linear equalizers may per-

form surprisingly different.

This paper studies linear detection methods in flat fading

MIMO channels. We evaluate their outage probability and

derive their diversity order. We show that in high spectral ef-

ficiencies minimum mean-square linear equalizers (MMSE-

LE) perform almost the same as zero-forcing linear equaliz-

ers (ZF-LE). However, in low spectral efficiencies MMSE-

LE performs better than ZF-LE in entire SNR range, and

may achieve full spatial diversity.

2. LINEAR EQUALIZERS

The input-output system model for flat fading MIMO chan-

nel with M transmit and N ≥ M receive antennas is

r = Hc + n , (1)

where c is the M × 1 transmitted vector, n ∈ CN×1 is the

noise vector, and r is the N × 1 received vector at a given

time instant.

The ZF equalizer is FZF = (HHH)−1HH , which trans-

forms the received signal to

r̂ = FZF r = c + (HHH)−1HHn . (2)

The MMSE equalizer is FMMSE = (HHH + ρ−1I)−1HH ,

where ρ is the receive SNR.

Since the symbols are detected individually, the SINR

of the individual symbols determines the performance. The

detection noise in (2), ñ
�
= (HHH)−1HHn, is a complex

Gaussian vector with zero-mean and covariance matrix

Rñ = E (
(HHH)−1HHn

)
= σ2

n(HHH)−1 . (3)

The associated SINR is γk = Ex/Rñ(k, k), which can be

shown to be a chi-square random variable with 2(N −M +
1) degrees of freedom [5].

The SINR of the kth symbol of MMSE detector is de-

termined by noise and residual interference, and is given

by [4]

γk = hH
k

(
ĤkĤH

k + ρ−1I
)−1

hk (4)

=
1

(I + ρHHH)−1
k

− 1 , (5)

where hk is the kth column of the channel matrix H and

removing this column from H gives Ĥk ∈ CN×(M−1).

Equation (4) shows that γk is a quadratic form whose

statistics has been derived in [6] as follows. Considering

the random matrix Ĥ ∈ CN×(M−1) and the random vector

h ∈ CN , the quadratic form Y = hH(ĤĤH + ρ−1I)−1h
has the CDF

FY (y) = 1 − exp(−y

ρ
)

N∑
n=1

An(y)
(n − 1)!

(
y

ρ

)n−1

(6)

where the auxiliary functions An(y) are given by

An(y) =

{
1 N ≥ M + n − 1
1+

∑ N−n
i=1 Ciy

i

(1+y)M−1 N < M + n − 1 .
, (7)

and Ci is the coefficient of yi in (1 + y)M−1 [6].

In general, the SINR of the output symbols of the MMSE

receiver are correlated, unlike those of the zero-forcing equal-

izer.
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3. OUTAGE PROBABILITY IN SEPARATE
SPATIAL ENCODING

Separate spatial encoding is the method where the data stream

is demultiplexed to several sub-streams, each for one trans-

mit antenna (e.g. V-BLAST). The outage event O occurs

when any of the sub-channels cannot support the rate that

is assigned to it. In our analysis, we consider equal rate

for the sub-channels, however, it is also possible to have a

non-uniform rate assignment.

After linear transformation, the mutual information be-

tween the elements of r̂ and the transmitted data vector c
is I(ck; r̂k) = log(1 + γk). Assuming target rate R, the

outage probability Pr(O) is :

Pr(O) = 1 − Pr

(
M⋂

k=1

{
I(ck; r̂k) ≥ R

M

})
.

= 1 −
(

Pr
(
I(ck; r̂k) ≥ R

M

))M

≈ M Pr
(
I(ck; r̂k) <

R

M

)
. (8)

Notice that in the above derivation, we have used the fact

that sub-channel outage events are independent, which is

a valid assumption for ZF-LE. While this assumption does

not hold for MMSE-LE, it does give a useful approximation

that provides the diversity order.

Using the CDF of χ2(N−M+1) in the evaluation of (8)

gives the outage probability for ZF-LE which is

Pr(O) ≈ MFY

(
2R/M − 1

ρ

)

·=
M(2R/M − 1)L+1

(L + 1)!
ρ−(L+1) , (9)

where
·= denotes asymptotic equivalence, and L = N −M .

Equation (9) shows the diversity order L+1 for the ZF-LE.

Using (6) in the evaluation of (8) results in the outage

probability of MMSE-LE

Pr(O) ≈ MFY

(
2

R
M − 1

)
·=

yL+1

(L + 1)!
· yM−1

(1 + y)M−1
ρ−(L+1)

∣∣∣∣
y=2

R
M −1

(10)

which also shows the diversity order L + 1 for the MMSE-

LE, the same as that of ZF-LE. However, the two outage

probabilities are not exactly the same. The ratio of the out-

age probability of (9) to (10) is:

Pr(O)ZF

Pr(O)MMSE
=

(1 + y)M−1

yM−1

∣∣∣∣
y=2

R
M −1

=

(
2

R
M

2
R
M − 1

)M−1

.

(11)

Note that the ratio of outage probabilities in (11) re-

mains fixed regardless of SNR and it only depends on the

relative target rate R
M . When R

M is small the outage proba-

bility of ZF-LE becomes larger than that of MMSE-LE. The

ratio (11) approaches one when R
M is large (see Section 5).

Generalization of the above results to non-uniform rate

assignment is straightforward. Uniform and non-uniform

rate assignment have the same diversity, though they have

different performance.

It is also possible to obtain the diversity-multiplexing

tradeoff, introduced in [7], for ZF-LE and MMSE-LE. Sub-

stituting R = r log ρ, a similar derivation for ZF-LE as

in (9) leads to

Pr(O) ≈ MFY

(
ρ

r
M − 1

ρ

)
·=

M

(L + 1)!
ρ−(L+1)(1− r

M )+ ,

where (x)+ = max(0, x). The above result indicates that

ZF-LE achieves the diversity gain of d(r) = (L + 1)(1 −
r
M ). Similarly for MMSE-LE, the derivation which led

to (10) gives:

Pr(O) ≈ MFY

(
ρ

r
M − 1

)
·=

M

(L + 1)!
ρ−(L+1)(1− r

M )+ .

4. OUTAGE PROBABILITY IN JOINT SPATIAL
ENCODING

Joint spatial encoding is the method where the data stream is

encoded and then demultiplexed into sub-streams to be sent

from the antennas (e.g. D-BLAST). Effectively, each data

symbol can contribute to signals of all the transmit anten-

nas. Considering the action of linear equalizers, outage oc-

curs when the aggregate mutual information of all the sub-

channels fails to support the target rate.

Assuming the target rate is R, the probability of the out-

age event O is

Pr(O) = Pr

(
M∑

k=1

I(ck; r̂k) < R

)
(12)

= Pr

(
M∏

k=1

(1 + γk) < 2R

)
. (13)

The SINR of the sub-channels of ZF-LE are indepen-

dent chi-square random variables with degrees 2(N −M +
1). Let Yk ∼ χ2(N−M+1), k = 1, · · · ,M . The outage

probability of ZF-LE is given by the CDF of the random

variable

M∏
k=1

(1 + Yk) = 1 +
M∑

k=1

Yk + · · · +
M∏

k=1

Yk . (14)
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Among the components of the above random variable, the

last term, which is the product of Yk’s, determines the di-

versity order. Through recursion, one can show1 that Y1 ·
Y2 · · ·YM has diversity order L + 1. Therefore, the diver-

sity order of ZF-LE is L + 1. Recalling the results from

Section 3, ZF-LE has the same diversity in joint and sepa-

rate spatial encoding architecture.

To obtain the outage probability of MMSE-LE, we sub-

stitute the SINR of MMSE-LE from (5) in (13) which gives:

Pr(O) = Pr

(
M∏

k=1

(
I + ρHHH

)−1

k
> 2−R

)
. (15)

The involvement of the diagonal elements of the random

matrix
(
I + ρHHH

)−1
makes further analysis intractable.

Therefore, we proceed to provide an upper bound to this

probability. The sum mutual information in (12) is

−
M∑

k=1

I(ck; r̂k) =
M∑

k=1

log
((

I + ρHHH
)−1

k

)

≥ M log

(
M∑

k=1

1
M

(
I + ρHHH

)−1

k

)

= M log

(
1
M

M∑
k=1

1
1 + ρλk

)
, (16)

where the inequality is due to Jensen’s inequality, and λk’s

are the eigenvalues of the Wishart matrix HHH. Substitut-

ing (16) into (12) gives:

Pr(O) ≤ Pr

(
M∑

k=1

1
1 + ρλk

≥ M2−
R
M

)
. (17)

To evaluate the above probability, we need the joint PDF of

the eigenvalues of HHH. Assuming N ≥ M , the joint PDF

of the ordered eigenvalues λk’s, λ1 ≤ λ2 ≤ · · · ≤ λM , is

fΛ(λ) = KM,N

M∏
i=1

λN−M
i

∏
i<j

(λi − λj)
2 exp

(
−

∑
i

λi

)
,

where KM,N is a normalizing constant [7].

The evaluation of (17) for a specific outage rate R is

rather difficult, due to the shape of the outage region. How-

ever, one can calculate the bound for small and large values

of R where the the outage region can be approximated by

regions with simpler shapes.

For a MIMO channel with M = 2 and N ≥ 2, the

bound (17) on outage probability becomes

Pr(O) ≤ Pr
(

1
1 + ρλ1

+
1

1 + ρλ2
≥ 21−R

2

)
.(19)

1Due to space limitation the derivation is not presented.

For small values of R, the outage region is an isosceles right

triangle with the side λ1 + λ2 = c2, where c2
�
= 2−b

ρ(b−1) and

b
�
= 21−R

2 . When N ≥ 2 the outage probability bound (17),

up to the scaling factor K2,N , is

Pr(O)≤
∫ c2

0

e−λ1λN−2
1

∫ c2−λ1

0

λN−2
2 (λ1 − λ2)2e−λ2dλ2 dλ1

·=
2(N − 1)!(N − 2)!

(2N)!

(
2 − b

b − 1

)2N

ρ−2N , (20)

where the achieved diversity is 2N . This is surprising be-

cause 2N is the maximum achievable diversity order.

For large values of R, the outage region is approximated

by two orthogonal strips. The strips are defined as 0 ≤
λ2, 0 ≤ λ1 ≤ ĉ2 and 0 ≤ λ1, 0 ≤ λ2 ≤ ĉ2, where

ĉ2
�
= 1−b

bρ . The outage probability bound, up to the scaling

factor 2K2,N , is

Pr(O)≤
∫ ĉ2

0

e−λ1λN−2
1

∫ ∞

0

λN−2
2 (λ1 − λ2)2e−λ2dλ2 dλ1

·= N(N − 2)!
(

1 − b

b

)N−1

ρ−(N−1) , (21)

which indicates that the upper bound2 has the diversity N −
1 = L + 1, where L = N − M . In the calculation of (21),

the intersection of the two strips is calculated twice. This

portion of integral, which decays as fast as ρ−2(N−1), does

not affect the asymptotic behavior of (21).

The previous results of the case M = 2, N ≥ 2 can be

extended to arbitrary values of M and N ≥ M , by gener-

alizing the outage regions in low and high spectral efficien-

cies.

5. SIMULATION RESULTS

We consider a MIMO system with M = N = 2. The out-

age probability of the linear equalizers in the separate archi-

tecture is shown in Figure 1. As expected, both linear de-

tectors show diversity order of one, regardless of the target

rate. For higher values of R they perform almost the same.

But, for lower values of R, MMSE-LE performs better than

ZF-LE throughout the SNR region. The dependency of the

relative performance of these equalizers on the target rate R
is in agreement with (11).

In Figure 2, the outage probability of the unconstrained

receiver and linear equalizers in a joint spatial encoding ar-

chitecture are shown. The ZF-LE equalizer has diversity

one regardless of R, as expected from Section 4. Surpris-

ingly, MMSE-LE shows diversity rate that depends on R:

for lower values of R the diversity order is very close to

2In Section 5, we show that the upper bound is tight in high spectral
efficiency region.
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Fig. 1. Separate spatial encoding. From left to right

R=1,2,4,10 bits/sec/Hz.
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Fig. 2. Joint spatial encoding. Top: Unconstrained re-

ceiver (solid line), MMSE-LE (solid line with ◦) and ZF-

LE (dashed line). Bottom: MMSE-LE and the upper

bound (17). From left to right R=1,2,4,10 bits/sec/Hz.

that of the unconstrained receiver, and for higher values of

R its diversity becomes the same as the diversity order of

ZF-LE. These results are in agreement with the analysis in

Section 4. Figure 2 also shows the tightness of the upper

bound (17) for small and large R. Though the bound is

loose for the intermediate values of R, it does predict diver-

sity order varying with R.

6. CONCLUSION

We present new results on the performance of linear equal-

izers in MIMO channels, and calculate their diversity order.

Our analytical and experimental results show that MMSE

linear equalizers have outage probability that may decay as

fast as the outage probability of the unconstrained receiver,

or as slowly as that of ZF linear equalizers, depending on

spectral efficiency,
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