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Abstract— Wireless communications often exploit guard intervals be-
tween data blocks to reduce inter-block-interference in frequency selective
channels. Here we propose a dual-branch transmission scheme that
utilizes guard intervals for blind channel estimation and equalization.
Unlike existing diversity schemes, in which different antennas transmit
delayed, zero-padded, or time reversed versions of the same signal, we
use two antennas to transmit independent data streams. It is shown that
for systems with two transmit antennas and one receive antenna, blind
channel estimation can be carried out based only on the second order
statistics of symbol rate sampled channel output. The proposed approach
involves no pre-equalization and has no requirement on channel coprime-
ness. It is also shown that in combination with the T-BLAST structure
[5] and Turbo coding, significant improvement can be achieved in the
overall system performance.

I. INTRODUCTION

Aiming for high spectral efficiency, recent years have witnessed
broad research activities on blind channel estimation and signal
detection. Although second order statistics of symbol rate sampled
channel output alone can not provide enough information for blind
channel estimation, it is possible with second order statistics of
fractionally spaced/sampled channel output [7], [12] or baud-rate
channel output samples from two or more receive antennas. This is,
in fact, an early example on blind channel identification by exploiting
space-time diversity techniques, the fractionally spaced sampling
takes advantage of time diversity, while multiple receive antennas
indicate spatial diversity at the receiver end.

Space-time coded systems, which generally fall into the MIMO
framework, bring significant challenge to channel identification. In
fact, in order to fully exploit the space-time diversity, the channel
state information generally needs to be estimated at the receiver
for all possible paths between Tx and Rx antenna pairs. Training
based channel estimation may require considerable overhead. To
further increase the spectral efficiency of space-time coded system,
blind channel identification and signal detection algorithms have been
proposed. In [10], blind and semiblind equalization, which exploit the
structure of space-time coded signals, are presented for generalized
space-time block codes which employ redundant precoders. Subspace
based blind and semiblind approaches have been presented in [1]–
[3], [13], and a family of convergent kurtosis based blind space-time
equalization techniques are examined in [9].

Note that for frequency selective channels, guard intervals are
often inserted between data blocks to prevent inter-block-interference,
such as in the OFDM system [8], the chip-interleaved block-spread
CDMA [14] and the generalized transmit delay diversity scheme [6].
In this paper, a simple two-branch transmission scheme, which is
independent of modulation (OFDM or CDMA) format, is proposed
to exploit the guard intervals for blind channel estimation and equal-
ization. The generalized delay diversity proposed in [6] is perhaps
the closest to our approach, but unlike [6], and also [3], [10], [13],
in which different antennas transmit the delayed, zero-padded, or
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time reversed versions of the same signal, the proposed transmission
scheme promises higher data rate since each antenna transmits an
independent data stream.

It is shown that with two transmit antennas and one receive
antenna, blind channel estimation can be carried out based only on
the second order statistics of symbol rate sampled channel output.
This can be regarded as a counterpart of [12] which exploits receive
diversity, and the proposed approach requires no channel coprime-
ness and involves no pre-equalization. For an overall data rate higher
than that of the SISO system, two or more receivers are necessary
for accurate equalization. Furthermore, it is also shown that in
combination with the T-BLAST structure [5] and Turbo coding,
significant gain can be achieved in the overall system performance.

II. THE PROPOSED TRANSMIT DIVERSITY SCHEME

The block diagram of the proposed two-branch transmit diversity
scheme is shown in Figure 1. The input symbols are first split by a
serial-to-parallel converter (S/P) into two parallel data streams; Each
data stream then forms blocks with specific zero-padding structure.
Data block structure may depends on the channel model and will be
explained subsequently. The structured data blocks, āk and b̄k, are
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Fig. 1. Two-Branch Transmit Diversity

transmitted through two transmit antennas over frequency selective
fading wireless channels, with channel impulse response vectors
denoted by h and g, respectively. The received signal is therefore
the superposition of distorted information signals, xk and yk, from
each transmit antenna, and the additive noise nk.

Let L denote the maximum multipath delay spread for both h and
g. We consider the following two cases:

1) Initial transmission delays are known while the two branches
are synchronous. In this case, without loss of generality, the
channel impulse responses can be represented as:

h = [h(0), h(1), · · · , h(L)], (1)

g = [g(0), g(1), · · · , g(L)], (2)

with h(0) �= 0, g(0) �= 0.
Partition the data stream from each branch into N-symbol
blocks (N ≥ L + 1), denote the k-th block from branch
1 and branch 2 by ak = [ak(0), ak(1), · · · , ak(N − 1)]
and bk = [bk(0), bk(1), · · · , bk(N − 1)], respectively. Zero-
padding is performed for each data block according to the
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following structure. Define

āk = [ak(0), ak(1), · · · , ak(N − 1), 0, · · · , 0︸ ︷︷ ︸
L+1

], (3)

b̄k = [0, bk(0), bk(1), · · · , bk(N − 1), 0, · · · , 0︸ ︷︷ ︸
L

], (4)

and assume that there are M blocks in a data frame and
the channel is time-invariant within each frame. Transmit
[ā1, ā2, · · · , āM ] from antenna 1 through channel h, and
transmit [b̄1, b̄2, · · · , b̄M ] from antenna 2 through channel g.
With the notation that ak(n) = bk(n) = 0 for n < 0 and
n > N − 1 , we have

xk(n) =

L∑
l=0

h(l)ak(n − l), (5)

yk(n) =

L∑
l=0

g(l)bk(n − l − 1). (6)

Define xk = [xk(0), xk(1), · · · , xk(N + L)]T and yk =
[yk(0), yk(1), · · · , yk(N + L)]T . For k = 1, 2, · · · , M , it
follows that

xk=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1) h(0)

.

.

.
.
.
.

h(L) h(L − 1) · · · h(0)

. . .
. . .

. . .
h(L) h(L − 1)

h(L)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎣

ak(0)
ak(1)

.

.

.
ak(N − 1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ak

,

(7)

yk=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g(0)
g(1) g(0)

.

.

.
.
.
.

g(L) g(L − 1) · · · g(0)

. . .
. . .

. . .
g(L) g(L − 1)

g(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎢⎣

bk(0)
bk(1)

.

.

.
bk(N − 1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
bk

,

(8)

where H and G are (N +L+1)×N matrices. Define nk =
[nk(0), nk(1), · · · , nk(N + L)] and overall received signal is

zk = xk + yk + nk (9)

2) Initial transmission delays are unknown, and the two branches
are either synchronous or asynchronous.
Assume that the maximum transmission delay is d symbol
intervals and the maximum multipath delay spread is L symbol
intervals, the channel impulse responses corresponding to the
two air links can be represented with two (L + d + 1) vectors,

h = [h(−d1), h(−d1 + 1), · · · , h(L + d − d1], (10)

g = [g(−d2), g(−d2 + 1), · · · , g(L + d − d2)], (11)

where 0 ≤ d1, d2 ≤ d. Define

āk = [ak(0), · · · , ak(N − 1), 0, · · · , 0︸ ︷︷ ︸
L+2d+1

], (12)

b̄k = [0, · · · , 0︸ ︷︷ ︸
d+1

, bk(0), · · · , bk(N − 1), 0, · · · , 0︸ ︷︷ ︸
L+d

].(13)

Again, transmit [ā1, ā2, · · · , āM ] from antenna 1 through chan-
nel h, and transmit [b̄1, b̄2, · · · , b̄M ] from antenna 2 through
channel g. It turns out that

xk(n) =

L+d∑
l=0

h(l − d1)ak(n − l), (14)

yk(n) =

L+d∑
l=0

g(l − d2)bk(n − l − d − 1). (15)

Define xk = [xk(0), xk(1), · · · , xk(N + L + 2d)]T ,
yk = [yk(0), yk(1), · · · , yk(N + L + 2d)]T , nk =
[nk(0), nk(1), · · · , nk(N + L + 2d)]T , and again define

zk = xk + yk + nk. (16)

When multiple receive antennas are available, the received signal
at each antenna can be characterized similarly using the same model
as described above. It will be shown in later sections that increasing
the number of receive antennas can improve the spectral efficiency,
which is consistent with the results in [4], [11].

III. BLIND CHANNEL IDENTIFICATION

Our discussion in this section is based on the following assump-
tions:

(A1) The input information sequence is zero mean, mutually in-
dependent and i.i.d.. Absorbing any non-identity variance
of the input symbols into the channel, this implies that
E{ak(m)al(n)} = δk−lδm−n, E{bk(m)bl(n)} = δk−lδm−n,
and E{ak(m)bl(n)} = 0.

(A2) The noise is additive white Gaussian, independent of the infor-
mation sequences, with variance σ2.

Note that we impose no limitation on channel zeros. In what follows,
blind channel identification is addressed for systems with proposed
transmit diversity and with either one receiver or multiple receivers.

A. Two-branch transmit diversity with one receiver
We look at the synchronous two-branch diversity case first. Con-

sider the auto-correlation matrix of the received signal block zk,
Rz = E{zkz

H
k }. It follows from (9) that for k = 1, · · · , M ,

Rz=

⎡
⎢⎢⎢⎢⎣

|h(0)|2 + σ2 h(0)h(1)∗ · · · h(0)h(L)∗

h(1)h(0)∗
1∑

l=0
|h(l)|2 + |g(0)|2 + σ2 · · · · · ·

. . .
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎦

(17)

Based on (7), (8) and assumption (A2), it follows that

Rz = HHH + GGH + σ2IN+L+1, (18)

where IN+L+1 denote the (N +L+1)×(N +L+1) identity matrix.
In the noise-free case,

Rz = HHH + GGH .

Note that h(0) �= 0, h = [h(0), h(1), · · · , h(L)] can be determined
up to a phase ejθ from the first row of Rz, and similarly, g =
[g(0), g(1), · · · , g(L)] can be determined up to a phase from the
second row of GGH = Rz − HHH .

Noise variance estimation: In the noisy case, good estimation on
the noise variance can improve the accuracy of channel estimation
significantly, especially when the SNR is low. Here we provide two
methods for noise variance estimation.

a) Recall that M is the number of blocks in a frame,
without loss of generality, assume that M is even.
We transmit [ā1, ā2, · · · , āM

2
, |b̄M

2 +1, b̄M
2 +2, · · · , b̄M ]
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from antenna 1 through channel h, and
[b̄1, b̄2, · · · , b̄M

2
, | āM

2 +1, āM
2 +2, · · · , āM ] from antenna 2

through channel g. Then for k = 1, · · · , M
2

, Rz is the same
as in (17). And for k = M

2
+ 1, · · · , M,

R̃z =

⎡
⎢⎢⎢⎢⎣

|g(0)|2 + σ2 g(0)g(1)∗ · · ·
g(1)g(0)∗

1∑
l=0

|g(l)|2 + |h(0)|2 + σ2 · · ·
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎦ (19)

Define r01 = g(0)g(1)∗, r02 = g(0)g(2)∗ and r12 =
g(1)g(2)∗. Let A(i, j) denote the (i, j)-th entry of a matrix
A, it follows from (17) and (19) that

g(1)g(2)∗ = R̃z(2, 3) − R̃z(1, 2) − Rz(1, 2). (20)

Therefore r01, r02, r12 are all available, and

r12 = g(1)g(2)∗ =
r∗01

g(0)∗
r02

g(0)
, (21)

When r12 �= 0, we obtain the noise-free estimation |g(0)|2 =
r∗
01r02
r12

and the noise variance can be calculated from

σ2 = R̃z(1, 1) − |g(0)|2. (22)

When r12 = 0, σ2 can be estimated through similar discussion
by considering g(1) = 0 and/or g(2) = 0. Substitute the
estimated noise variance into (17), the noise-free estimation of
|h(0)|2 is obtained. It then follows directly that h and g can
be estimated up to a phase difference. This method requires
that M be large enough to obtain an accurate estimation of the
correlation matrices. As an alternative, we may insert zeros and
obtain noise variance estimate from a frame with almost half
the length.

b) If we insert a zero after each block, that is, we
transmit [ā1, 0, ā2, 0, · · · , āM , 0] through h and
[b̄1, 0, ā2, 0, · · · , āM , 0] through g, then the new correlation
matrix R̄z of the channel output is

R̄z =

[
Rz 0
0 σ2

]
(23)

The noise variance σ2 can then be estimated and used for noise-
free channel estimation in combination with Rz, as discussed
above.

Channel estimation in the asynchronous case follows directly from
(12),(13) and our previous discussions. It can be seen that when the
initial delays are unknown, extra overhead zeros are needed.

B. Systems with multiple receive antennas

For systems with two or more receivers, channel estimation can
be performed at each receiver independently or from more than one
receivers jointly. The major advantage of joint channel estimation
is that accurate noise variance estimation becomes possible without
inserting extra zeros or extending the frame length.

Tx-1

Tx-2

Rx-1

Rx-2

h1

h2

g1

g2

Fig. 2. Two-Branch Transmit Diversity with Two Receivers

Take a synchronous 2 × 2 system as an example (see Figure
2). Define H1,H2 as in (7) and G1,G2 as in (8), corresponding

to h1,h2,g1,g2, respectively. If [ā1, ā2, · · · , āM ] is transmitted
through h1,h2 , and [b̄1, b̄2, · · · , b̄M ] is transmitted through g1,g2,
the received signal at receiver 1 and 2 can be expressed as:

z1
k = [H1,G1]

[
ak

bk

]
+n1

k, z2
k = [H2,G2]

[
ak

bk

]
+n2

k. (24)

where z1
k, z2

k, n1
k,n2

k are defined in the same manner as in Section
II. Stacking z1

k, z2
k into a 2(N + L + 1)-vector, we obtain

zL
k =

[
z1

k

z2
k

]
=

[
H1 G1

H2 G2

]
︸ ︷︷ ︸

∆
=F

[
ak

bk

]
︸ ︷︷ ︸

∆
=sk

+

[
n1

k

n2
k

]
. (25)

Consider the correlation matrix of zL
k , it follows that

RL
z = E{zL

k (zL
k )H} = FFH + σ2I2(N+L+1). (26)

Note that F is a 2(N + L + 1)× 2N tall matrix, the noise variance
σ2 can be estimated through the SVD of RL

z , by averaging the least
2(L+1) eigenvalues of RL

z . Extension to asynchronous systems and
systems with more than two transmit antennas is straightforward and
is omitted here.

IV. EQUALIZATION

Once channel estimation is carried out, equalization can be per-
formed in several ways. Take the two-branch transmit diversity with
two receivers as an example, define sk = [aT

k ,bT
k ]T as before, it

follows from (25) that the information blocks ak and bk can be
estimated by

min
sk

‖ zL
k − Fsk ‖, (27)

either via least square or through the maximum likelihood (ML)
approach based on the Viterbi algorithm.

For systems with two transmit antennas and one receiver, it follows
from (7), (8) and (9) that

zk = [H,G]sk + nk, (28)

and [H,G] is (N + L + 1) × 2N . This implies that generally, we
should choose N = L + 1 such that [H,G] is not severely rank
deficient. In other words, the overall data rate of the two-branch
transmit system with one receiver will be the same as the symbol rate
of the corresponding single transmitter and single receiver system.
While in the 2×2 system, F is 2(N +L+1)×2N . Obviously, N is
no longer constrained by L, and can be chosen as large as possible,
as long as the frame length is within the channel coherence time
range and the computational complexity is acceptable.

With the proposed transmit diversity scheme, blind channel iden-
tification and signal detection can be performed with the overall data
rate much higher than the symbol rate of the SISO system. For a
2×2 system in a slow time-varying environment, for example, blind
channel identification and signal detection can be achieved at a data
rate 2N

N+L+1
times that of the SISO system.

V. SIMULATION RESULTS

In this section, simulation results are provided to illustrate the
performance of the proposed approach. In the example, each antenna
transmits BPSK signals as the channel impulse response between
each transmitter-receiver pair is generated randomly and indepen-
dently. The channel is assumed to be static within each frame
consisting of M blocks. In the simulation,

Channel Estimation MSE
∆
=

1

I

I∑
i=1

‖ĥi − hi‖2/‖hi‖2, (29)
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where hi and ĥi denote the true channel and the estimated channel in
the i-th run, respectively. I is the total number of Monto Carlo runs.
At each receive antenna, the SNR is defined as ratio between the total
received signal power and the noise power, and it is assumed that the
receive antennas have the same SNR level. In the simulations, we
choose N = 3(L + 1) so that the overall data rate is 1.5 times that
of the corresponding SISO system over the same bandwidth, and all
the simulation results are averaged over I = 500 Monte Carlo runs.

Consider asynchronous two-branch transmission with two re-
ceivers, either with or without the knowledge of the transmission
delays. The channels are assumed to have three rays, the initial
delays are uniformly distributed over [0,2] symbols, the direct path
amplitude is normalized to 1, and the two successive paths have
relative delays (with respect to the first arrival) uniformly distributed
over [1,5] symbols with complex Gaussian amplitudes of zero mean
and standard deviation 0.3. As shown in Figure 4.(a), when the delays
are unknown, to detect the first arrival, the signal power of the first
path should be sufficiently large in comparison with the noise power.
In order to illustrate the proposed approach in this example, channel
estimation is obtained from one receiver, and equalization part is
based on two receivers.

We also consider to improve the system performance by combining
the threaded layered space-time (TLST) coding [5] with the proposed
transmission scheme, as shown in Figure 3. Here “SI” stands for
spatial interleaver, and “Int” for interleaver. As can be seen in

S/P

Encoder

Encoder

MAP

MAP

SI

Int

Int

Input bits

Zero
Padding

Zero
Padding

Channel
h

Channel
g

xk

yk

z k

n k
ak

b k

ak

b k

+

Fig. 3. ST-diversity-with-TBLAST

Figure 4.(b), significant performance improvement can be achieved
with Turbo encoding (here we use a rate 1/2 Turbo encoder) and the
TLST structure.

VI. CONCLUSIONS

In this paper, a dual-branch transmission scheme that utilizes
guard intervals for blind channel estimation and equalization is
proposed. It is shown that with two transmit antennas and one
receive antenna, blind channel estimation and equalization can be
carried out based only on the second order statistics of symbol rate
sampled channel output. The proposed approach involves no pre-
equalization and has no requirement on channel zero locations. It
is also shown that in combination with the T-BLAST structure and
Turbo coding, significant improvement can be achieved in the overall
system performance.
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