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ABSTRACT

We consider the problem of blind maximum-likelihood (ML)
detection for the orthogonal space-time block code (OSTBC)
scheme. Our previous work has shown that for OSTBCs the blind
ML detection problem can be simplified to a Boolean quadratic
program (BQP). This sequel focuses on effective optimization
methods for that BQP, which, from an optimization viewpoint, is
still a computationally hard problem. First, we consider semidefi-
nite relaxation (SDR), a high-precision BQP approximation algo-
rithm with a computational cost that is polynomial in the problem
size. We also propose a simple method that can significantly re-
duce the average complexity of the SDR technique. Second, we
consider sphere decoding, an exact BQP solver that can be com-
putationally expensive in the worst case, but generally incurs a
reasonable average complexity particularly at high SNRs. Simu-
lation results indicate that these two blind ML algorithms provide
very similar bit error rate performance. Moreover, numerical stud-
ies show that SDR provides better complexity performance than
sphere decoding in the worst-case sense, while sphere decoding
provides better complexity performance in the average sense.

1. INTRODUCTION

Recently there has been much interest in developing blind re-
ceivers for space-time coding schemes; e.g., [1,2]. The orthogonal
space-time block code (OSTBC) scheme [3] has been found to
be particularly attractive in that the OSTBC matrix structures can
be exploited to make the blind receivers less complex and more
effective; e.g., blind subspace receivers [4], and blind maximum-
likelihood (ML) receivers [5, 6]. The focus of this paper is on
the blind ML method. It has been illustrated [5, 6] that the blind
ML OSTBC detector with BPSK or QPSK constellations can be
simplified to a Boolean quadratic program (BQP), the complexity
of which is comparable to that of solving a coherent ML MIMO
detection problem. The BQP is well known to be computation-
ally hard to solve. There are simple suboptimal algorithms for
the blind ML BQP, such as the methods [4–6], but to efficiently
obtain a near-optimal or exactly optimal BQP solution is consid-
erably more challenging. This paper proposes two alternatives
for blind ML OSTBC detector implementations, both of which
have been recently found to be powerful and computationally ef-
ficient BQP techniques. First, we consider semidefinite relaxation
(SDR), a suboptimal BQP solver that has been shown [5, 7–11]
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to provide high-precision approximation accuracy with an afford-
able worst-case computational cost. We will propose a modified
SDR algorithm that can provide considerable computation savings
compared to the original SDR. Second, we consider a particularly
effective exact BQP solver, namely sphere decoding [12–14]. The
worst-case complexity of sphere decoding can be very expensive,
but much evidence in the coherent MIMO detection application
(e.g., [14]) has suggested that the average sphere decoding com-
plexity is acceptable at high SNRs. Simulation results in Section 4
will show that these two blind ML implementation alternatives
provide very similar bit error performance. It is then interesting
to compare the complexity performance of the two methods. This
aspect will be numerically studied in Section 4.

2. BACKGROUND

This section reviews the OSTBC scheme and the respective blind
ML detection problem.

2.1. Orthogonal Space-Time Block Coding Scheme

We consider a standard space-time block code (STBC) transmis-
sion scenario in which the MIMO channel is flat in frequency. Let� �

and
� �

denote the numbers of transmitter and receiver an-
tennas, respectively. By letting � be the code block length, the
received code block of a single STBC can be modeled as:� � 	 
 � � 
 � � �

(1)

where
� � � � � � �

are transmitted bits,

 � � 
 � � � � � �

is an
STBC function that maps information bits to a code matrix,

	 �� � � � � �
is the MIMO channel matrix, and

� � � � � � �
is an

additive white Gaussian noise (AWGN) matrix with zero mean and
variance � � . Orthogonal STBCs (OSTBCs) are a class of codes
constructed based on the theory of orthogonal designs [3]. In the
QPSK constellation case, an OSTBC function can be expressed as


 � � 
 � � �  !
" # $ % " & " � ' � �  !

" # $ ( " & " ) � �  �
(2)

where % " � ( " � * � � � �
are the constituent matrices of the code,& " � � � � �

is the + th element of
�
, and

' � , - �
. In the BPSK

constellation case, the matrices ( " are absent from (2). Both the
QPSK and BPSK OSTBCs can be represented by


 � � 
 � �!
" # $ . " & " �

(3)
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where � � � � � � � �
. The OSTBC constituent matrices are spe-

cially designed such that for any
� � 	 
 � � 


,� � � � � � � � � � � � � �� � � � � (4)

where
� � � � denotes the � -norm. The semi-orthogonal code prop-

erty in (4) has been shown to lead to the two important advantages
of the maximum diversity gain and low detection complexity given
channel state information (CSI) at the receiver [3]. The present
paper considers blind detection of OSTBCs; i.e., detection in the
absence of CSI at the receiver.

2.2. Formulation of Blind Maximum-Likelihood Detection

To formulate the problem of blind maximum-likelihood (ML) de-
tection, we apply the two standard assumptions that lead to the
so-called deterministic blind ML detector [2]. First, the MIMO
channel is assumed to be slowly time varying such that

�
remains

static over � consecutive code blocks. In this case it is appropriate
to add a block index, � , to the OSTBC signal model in (1):� � � � � � � � � � � �  � � �  ! ! !  �  

(5)

where
� �

is the � th received signal block,
� � � 	 
 � � 


is the � th
bit symbol block, and

� �
contains the AWGN samples. Second,�

is assumed to be a deterministic unknown. Define� " # $ � % � � "  ! ! !  � � $ & � � 	 
 � � 
 $ !
(6)

With the two channel assumptions, the ML detector for the re-
ceived signal frame

% � "  ! ! !  � $ & is shown to be [2]

	 '�  '� " # $ � � ( ) * + , -. / 0 1 2 3 1 �4 5 6 7 / 8 9 " : ; 7
$<� = " � � � > � � � � � � � �? !

(7)

where
� � � ? denotes the Frobenius norm. In [5, 6] it is further

shown that by exploiting the OSTBC properties in (3) and (4), the
ML detected symbols '� " # $ can be determined alone by solving

'� " # $ � ( ) * + ( @4 5 6 7 / 8 9 " : ; 7
$<� = "

$<
A = " � �� B C D � A � A

� ( ) * + ( @4 5 6 7 / 8 9 " : ; 7 � � " # $
E
FG

B C D " " ! ! ! B C D " $
...

. . .
...B C D $ " ! ! ! B C D $ $

H
IJ � " # $

(8)

where
B C D � A � K 
 � 


has its
� L  M �

th entry given by% B C D � A & � N � O P 	 Q ) 	 � � � �� � N � �A � � !
(9)

The focus of this paper, which will be elaborated upon in the next
section, is on practically realizable algorithms for finding the solu-
tion of (8).

3. EFFICIENT ALGORITHMS FOR BLIND ML OSTBC
DETECTION

For notational simplicity, we rewrite the blind ML detection prob-
lem in (8) as + ( @4 / 8 9 " : ; 7 � � B �

(10)

in which some subscripts in the original problem are dropped.
Problem (10) is a Boolean quadratic program (BQP), whose op-
timal solution can be expensive to compute. (The BQP is NP-
hard.) In Section 3.1, we describe the semidefinite relaxation
(SDR) method for efficient approximation of the BQP. In this sec-
tion, a method of reducing the complexity of SDR is also proposed.
In Section 3.2, we describe an exact BQP solution using the sphere
decoding method. The bit error performance and complexity per-
formance of the two methods will be numerically compared in the
subsequent section.

3.1. Semidefinite Relaxation

Semidefinite relaxation (SDR) has been shown, both theoretically
and practically, to be a high-precision approximation algorithm for
the BQP [7–10]. The SDR approximation advantages in the blind
OSTBC ML application have also been examined in [5, 6]. SDR
considers solving the following relaxed BQP problem:+ ( @R Q ) 	 S B �

(11a)T ! Q ! U V V � �  W � �  ! ! !  � � (11b)S X Y
(11c)

where
S X Y

means that
S

is positive semidefinite (PSD). The
SDR problem in (11) is a relaxation of (10) because any

S � � � �
,� � 	 
 � � 
 $

, is a feasible point of the SDR problem. An advan-
tage of SDR is that Problem (11) is a convex semidefinite program,
the globally optimal solution of which can be efficiently computed
by readily available optimization algorithms [15] with an opera-
tional cost of Z � � � � � [ \ ] �

. To use SDR to approximate the BQP
solution, the following method can be used. Let

'S
denote the SDR

solution in (11), and ^ 	 'S �
be the principal eigenvector of

'S
. The

BQP solution can be approximated by

'�
SDR

� T , * - � ^ 	 'S � � !
(12)

Another possible BQP solution approximation, which were nu-
merically found to be very effective [9], is the Goemans-
Williamson randomized algorithm [7]; please see [9] for the im-
plementation details.

When compared to some simple closed-form based blind de-
tectors (such as those in [1, 4]), the SDR method is computation-
ally more expensive due to the computational overhead for the
SDR optimization algorithm. Here we propose a modified SDR
algorithm [6] that finds the SDR solution without using the SDR
optimization algorithm sometimes, by making use of a computa-
tionally cheap suboptimal blind detector. The following theorem
provides the framework for the proposed method:

Theorem 1 If there is a vector _� � 	 
 � � 
 $
that satisfies` , ( * � _� a � B _� � � > B X Y

(13)

where
a

is the Hadamard (elementwise) product and
` , ( * � b �

is
a diagonal matrix with

W
th diagonal given by c V

, thenS � _� _� �
(14)

is an optimal SDR solution in (11). Such an _�
is also an optimal

solution to the BQP in (10).
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The proof of Theorem 1, which is available in [6], is not shown
here due to lack of space. An alternative way to generate the prin-
ciples behind that proof is to consider the rank-

�
optimality result

in [11].
Now, suppose that a suboptimal blind symbol decision, de-

noted by �� � � � � � � 	 
 � � � 
 �
, is easily available computationally.

Sometimes �� � � � � � �
will coincide with the blind SDR-ML decision.

Using the optimality condition in (13), we can inspect whether�� � � � � � �
is capable of forming the SDR solution. By doing so, the

SDR optimization process is only necessary when �� � � � � � �
fails to

satisfy the optimality condition in (13). This idea leads to the fol-
lowing modified SDR algorithm:

Modified SDR Implementation

Given
� 	 � 
 � � 
 �

, and a suboptimal blind sym-
bol decision �� � � � � � � 	 
 � � � 
 �

.

if
� � � � � �� � � � � � � � � � �� � � � � � � � � � � � �

output �� � � � � � �
as the blind SDR-ML solution,

else
run the original SDR algorithm to compute the
blind SDR-ML solution.

3.2. Sphere Decoding

In sphere decoding, we are concerned with solving the following
integer least squares (ILS) problem

� � �
� �  ! " # � $ � " %% (15)

where & ' ( is a set of integers. We will show that the blind ML
BQP problem in (10) can be reformulated as an ILS. To describe
the sphere decoding principle, define a subset

) � * � + 
 � 	 & , - " # � $ � " %% . * �
(16)

Now suppose that we are given a squared radius, denoted by
* /

,
such that the optimal ILS solution lies in

) � * / �
. In practice, such

a
* /

can be determined by some heuristic means [12]; e.g., if a
suboptimal ILS solution, denoted by �� � � � � � � 	 & 
 �

, is easily
available computationally, we can set

* / + " # � $ �� � � � � � � " %% .
Subsequently, solving the ILS problem is equivalent to solving the
following sphere constrained ILS problem

� � �
� � 0 1 2 3 4

" # � $ � " %% (17)

Sphere decoding algorithms are point search methods particularly
designed to solve (17). An advantage of sphere decoding is that
if a large number of points in & , are excluded from

) � * / �
, then

sphere decoding will be much more efficient than a complete point
search for (15). However, in a worst-case situation, such as when* /

is poorly initialized, sphere decoding can be as expensive as the
complete point search.

There are many implementation variants for sphere decoding;
see [12–14] for the details of those algorithms. One popular imple-
mentation is the Viterbo-Boutros (VB) [12]. Moreover, recent de-
velopment has indicated that the so-called Schnorr-Euchner (SE)
sphere decoding implementation [13,14] can offer significant com-
plexity reduction compared to many other sphere decoding imple-
mentations. We will evaluate both the VB and SE implementations

of the sphere decoder in our blind ML OSTBC detector. To apply
sphere decoding to blind ML detection, we reformulate the blind
ML BQP problem in (8) as

� � �
� � 5 6 7 8 9 : � ; � < = � � � �

(18)

for some real constant < , - < - > ? . Let us choose < to be greater
than the largest eigenvalue of

�
, such that < = � �

is PSD. Then
we can perform Cholesky factorization

$ ; $ + < = � �
, where$ 	 � 
 � � 
 �

is the upper triangular Cholesky factor of < = � �
.

Thus, Problem (18) is equivalent to the ILS (with
# + �

).

4. SIMULATIONS

In this simulation example, we evaluate the BER performance of
the proposed blind ML detectors. The simulation scenario is sim-
ilar to that in [5], and is briefly described as follows: We employ
the BPSK full-rate OSTBC with

@ � + A
, and B + C

[3]. More-
over, we set

@ D + C
and E + F

. The blind detectors tested are the
SDR-ML detector, the ML detector by sphere decoding, the norm
relaxed ML detector [5] (see also [4]), the cyclic ML detector [2],
and the subspace detector [1]. Fig. 1 plots the BER performance of
the blind detectors versus the SNR. (Since the original and modi-
fied SDR algorithms provide exactly the same symbol decision, we
only plotted the BER performance of the original SDR algorithm.)
We see that the BERs of the SDR-ML and sphere decoding ML
detectors are very close. Moreover, the BER performance of the
SDR-ML and sphere decoding ML detectors is significantly better
than that of the other suboptimal detectors.
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Fig. 1. BER performance in a
C

receiver antenna case.

The previous simulation settings were used to evaluate the
computational costs of the SDR algorithm, the modified SDR al-
gorithm, the VB sphere decoder, and the SE sphere decoder. We
use the norm relaxed ML detector to initialize the sphere decoding
algorithms and to provide the preliminary decision for the modi-
fied SDR algorithm. The complexities of the above methods are
measured by counting the total number of floating point opera-
tions (FLOPs) required to jointly detect

R E symbols (note thatR E + A S in this example). Fig. 2(a) shows the average (ex-
pected) complexity performance of the various algorithms. We
notice that for a wide range of SNRs, the SE sphere decoder gener-
ally provides better average complexity performance than the other
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Fig. 2. Average and worst-case complexity performance of the SDR and sphere decoding algorithms.

methods. Unlike the sphere decoders, the SDR algorithm has an
average complexity that is essentially invariant to the SNR. As for
the modified SDR algorithm, it has an average complexity that de-
creases with the SNR. In particular, the modified SDR algorithm
manages to provide a slightly lower average complexity than the
SE sphere decoder when the SNR is greater than � � dB.

The worst-case complexity of the various algorithms is plotted
in Fig. 2(b). The worst-case complexity is measured by picking
the largest FLOP count in


 � � � � � � independent trials. The figure
shows that at low SNRs, the two sphere decoders yield poor worst-
case complexity performance compared to the SDR algorithms. It
is worthwhile pointing out that for a fixed SNR, the worst-case
complexity of the sphere decoders can become unacceptably large
as the problem size increases [6].

5. CONCLUSION

This paper presents two highly effective methods for realizing the
blind ML OSTBC detector, namely SDR and sphere decoding.
SDR leads to an approximate blind ML receiver, but it exhibits
good approximation accuracy and has an affordable worst-case
computational complexity. Sphere decoding results in an exact
blind ML receiver that yields poor complexity performance in the
worst case, but it generally offers a reasonable average computa-
tional cost. Using simulations, we have illustrated that the two
methods provide very similar bit error performance. Numerical
complexity studies have indicated that while the average complex-
ity performance of sphere decoding is generally better than that of
SDR, sphere decoding can yield poor worst-case complexity per-
formance compared with SDR.
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