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ABSTRACT
Despite its optimal bit-error-rate (BER) performance, the maxi-

mum-likelihood (ML) detection is known to be NP-hard and suf-

fers from high computational complexity. The currently popular

suboptimal detectors either achieve a polynomial time complex-

ity at the expense of BER performance degradation (e.g., MMSE

Detector), or offer a near ML performance with a complexity that

is exponential in the worst case. This paper considers a highly

efficient (polynomial worst case complexity) quasi-ML detection

method based on Semi-Definite (SDP) relaxation. It is shown

that, for a standard vector Rayleigh fading channel, this SDP-

based quasi-ML detector achieves, in the high signal-to-noise ratio

(SNR) region, a BER which is identical to that of the exact ML de-

tector. In the low SNR region we use the random matrix theory to

show that the SDP-based detector serves as a constant factor ap-

proximation to the ML detector for large systems.

1. INTRODUCTION

Consider a Rayleigh fading vector communication channel with n
transmit and m receive antennas:

y =
√

ρ/n Hs + v, (1)

where ρ is expected SNR at each receive antenna, s ∈ Cn is the

vector of modulated transmitted signals and Cn denotes a constel-

lation of dimension n, y ∈ R
m is the real-valued vector of re-

ceived signals, H ∈ R
m×n is the matrix of fading coefficients,

Hik ∼ N (0, 1), ∀ i, k, and v ∈ R
m is additive white Gaussian

noise (AWGN), vi ∼ N (0, 1), ∀ i. Notice that the above channel

model (1) is quite generic and can be used to describe other com-

munication systems, such as a synchronous CDMA multi-access

channel, with n representing the number of users.

For a memoryless channel with equiprobable input signals, the

maximum-likelihood detection achieves the minimum error prob-

ability of detection. In general, ML Detector solves the following

optimization problem:

sML = arg max
s∈Cn

p(y|s, H),

where p(y|s, H) is the conditional probability density function of y
and sML is the ML estimate of the transmitted signals. For the

Gaussian noise ML detection can be written in the form:

sML = arg min
s∈Cn

‖y −
√

ρ/n Hs‖2. (2)
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In a practical communication system, constellation Cn consists of

discrete n-dimensional vectors s. This discrete structure generally

causes the problem (2) to be NP-hard. For systems with small n,

exhaustive search can be applied to determine the ML solution.

However, with relatively large n, m, such approach becomes pro-

hibitively expensive. For example, in decoding the so called Linear

Dispersion Codes [1] for a wireless channel, one must solve (2) for

an equivalent channel model with dimensions up to 100. In that

situation, the exhaustive search is no longer practically feasible.

Instead, efficient suboptimal detection algorithms must be used.

In other words, we need to design computationally efficient de-

tectors (i.e., with polynomial time complexity) which can achieve

BER close to the one provided by ML Detector.

One of the popular detectors, the so called Sphere Decoder [2],

originated from the work in [3], runs exhaustive search in the re-

gion around zero-forcing solution to localize the ML solution. Al-

though Sphere Decoder offers excellent practical performance, its

expected complexity is exponential in the problem size [4]. As

an alternative, quasi-ML detector [5] based on SDP relaxation and

PSK Decoder [6] based on low rank relaxation provide BER close

to that of ML detector in the high SNR region. The SDP-based

detector (called SDP Detector hereafter) solves an SDP problem

of polynomial complexity by means of recently developed Interior

Point methods. The BER performance of SDP detector compares

favorably to that of MMSE Detector since the latter relaxes ML

detection to a linear problem. This paper presents a probabilistic

analysis of the optimality conditions for SDP Detector. Our anal-

ysis in the high SNR region leads us to a sufficient condition for

SDP Detector to output the ML solution. In the low SNR region,

we use the classical results on the limiting eigenvalue distribution

of large random matrices [7] to establish a constant factor optimal-

ity for the SDP Detector.

We adopt the following notations: bold letters denote vectors

while bold capital letters will signify matrices.

2. SDP DETECTOR

We will focus on the BPSK case when Cn = {−1, +1}n. First of

all, we would like to linearize the objective function, so we proceed

in the following way:

‖y −
√

ρ/n Hs‖2 = Trace(QxxT ),

where matrix Q ∈ R(n+1)×(n+1) and vector x ∈ Rn+1 are de-

fined as

Q =

[
(ρ/n) HT H − √

ρ/n HT y
−√

ρ/n yT H ‖y‖2

]
, x =

[
s
1

]
(3)
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Thus, problem (2) can be reformulated as

fML := min Trace(QX)
s.t. X = xxT

Xi,i = 1, i = 1, . . . , n + 1.
(4)

The new problem formulation (4) is insensitive to the sign of vec-

tor x, hence, if we obtain solution x̂ with the last entry equal to −1,

then we simply declare −x̂ as the solution of (4) for consistency

with (3). The constraints in (4) can be written without variable x
if we impose rank-1 constraint on matrix X and make sure that it

is positive semi-definite (PSD). This observation leads to the prob-

lem with linear objective, linear and PSD constraints:

fML := min Trace(QX)
s.t. X � 0

X is rank-1
Xi,i = 1, i = 1, . . . , n + 1.

(5)

This problem is equivalent to the ML detection problem in (2) over

BPSK constellation, therefore, it is still NP-hard in general, al-

though there is no explicit integer constraint. This simple reformu-

lation allows us to spot the constraint making the problem difficult.

Rank-1 constraint is the only non-convex constraint in (5), so we

drop it and solve the convex optimization problem:

fSDP := min Trace(QX)
s.t. X � 0,

Xi,i = 1, i = 1, . . . , n + 1.
(6)

The problem that naturally arises after solving (6) is that the so-

lution Xopt is no longer restricted to be rank-1, so we still have

to project optimal matrix Xopt to the set of rank-1 matrices. It

turns out that solution matrix Xopt with high probability comprises

enough information about ML solution xML. There may be sev-

eral ways to generate an estimate x̂SDR of transmitted signals from

matrix Xopt. In this paper we consider the randomized procedure

that can be described by the following algorithm:

1. Take a spectral decomposition Xopt =
∑n+1

i=1 λiuiuT
i and

let vi =
√

λi ui, i = 1, . . . , n + 1.

2. Pick k such that vector vk corresponds to the largest eigen-

value: vk = arg max1≤i≤n+1{‖vi‖}.

3. Define distribution Px:

Pr{xi = +1} = (1 + vki)/2,
Pr{xi = −1} = (1 − vki)/2.

(7)

4. Generate L i.i.d. vector samples x̄l, l = 1, . . . , L, such

that each entry x̄li, i = 1, . . . , n + 1 is drawn from the

distribution defined in (7).

5. For all L samples set x̄l := −x̄l if (n+1)-st entry of x̄l is

equal to −1;

6. Pick x̂ := arg minl x̄T
l Qx̄l and assign fSDR := x̂T Qx̂.

7. Output quasi-ML estimate x̂SDR which is vector x̂ with the

last bit discarded.

3. MAIN RESULTS

In the sequel we assume that m = n. Since SDP Detector (SDP

solver of (6) followed by a randomized rounding procedure) rep-

resents an approximation algorithm for the original ML detection

problem, we are interested in its optimality criteria.

Theorem 1 For a given ρ and n, the solution Xopt of relaxed
problem (6) is rank-1, if channel matrix H and noise v satisfy the
following inequality:

λmin(HT H) >
√

n/ρ ‖HT v‖1, (8)

where λmin(HT H) denotes the minimum eigenvalue of HT H and
1-norm of any vector a is defined as ‖a‖1 =

∑
i |ai|.

Since a random channel matrix is full rank with probability 1,

we can also interpret this claim as follows: for most channel ma-

trices H and noise vectors v there exists a sufficiently high SNR

such that the solution of SDP solver (6) is rank-1 and sufficiency

is determined by (8).

We can see that the solution of SDP problem (6) falls in the

feasible set of the original ML detection problem (5) when condi-

tion (8) is satisfied. Since SDP problem is the relaxed version of

ML detection problem, then solution Xopt of SDP problem must

also be the solution of the ML detection problem, that is, SDP

Detector solves the ML detection problem Xopt = xMLxT
ML (in

polynomial time) when (8) holds true. For large systems SDP De-

tector can provide BER arbitrary close to that of ML Detector by

choosing a sufficiently high SNR. This result is summarized in the

theorem which is stated here without a proof.

Theorem 2 Suppose limn→∞ ρ−1n6 = 0. Then

Pr
{

λmin(HTH) >
√

n/ρ ‖HTv‖1

}
→ 1, as n → ∞.

The results in Theorems 1 and 2 are important for communica-

tion systems operating in the high SNR region. The next theorem

characterizes the asymptotic behavior of SDP Detector in the low

SNR region for large systems. We will use notation ≤P (=P ) to

imply that inequality(equality) is satisfied in probability as n →
∞, that is, for two random variables a and b we write a ≤P b
if Pr{a ≤ b} → 1 with n going to infinity.

Theorem 3 The objective value of SDP Detector fSDR is within
a constant factor c(ρ) away from the ML objective value in prob-
ability:

fSDR

n
≤P c(ρ)

fML

n
, c(ρ) = 1 +

9ρ(2ρ + 1)√
12ρ + 1 − 1

. (9)

We can see from (9) that limρ→0 c(ρ) = 5/2, which means that in

probability SDP Detector provides a 5/2-approximation algorithm

for the ML detection problem in low SNR region. Next section will

be devoted to proving these claims.

4. PERFORMANCE ANALYSIS OF SDP DETECTOR

In our notations e (E) will denote the vector (matrix) with all en-

tries equal to 1. Since H is a Gaussian zero-mean matrix, we can

assume that s = e has been transmitted due to symmetry.

Lemma 1 For any full rank matrix H, we have

lim
ρ→∞

fSDP (Xopt)/ρ = 0, and lim
ρ→∞

Xopt = E.

Proof of Lemma 1: Note that, although X = E may not be

the optimal solution of SDP problem (6), it is always feasible

and, therefore, the objective value at the optimum is always less

than or equal to fSDP (E). After simple derivations we can see
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that fSDP (E) = Trace(QE) = ‖v‖2. Since both Q and any fea-

sible X are PSD matrices, then fSDP (Xopt) ≥ 0. That is, we

always have 0 ≤ fSDP (Xopt) ≤ ‖v‖2. Divide it by ρ and obtain

fSDP (Xopt)/ρ → 0 as ρ → ∞.

For convenience we would also like to represent the optimal

matrix Xopt in the block form:

Xopt =

[
Z z
zT 1

]
� 0, (10)

where block Z ∈ Rn×n is also a PSD matrix with ones on the

diagonal. Evaluation of ratio fSDP (Xopt)/ρ in terms of blocks Z,

z and ρ leads to the following expression:

fSDP (Xopt)/ρ = Trace(QXopt)/ρ
= (1/n) Trace

(
HT H(Z − zzT )

)
+ ‖√1/n H(e − z) +

√
1/ρ v‖2.

(11)

Using Schur complement for PSD matrix Xopt we can see that

Z − zzT is PSD matrix and, hence, both terms in (11) are nonneg-

ative and must vanish with ρ going to infinity. If H is full rank, we

have z → e as ρ → ∞ to ensure that the second term in (11) goes

to 0. For the first term with full rank matrix HT H we must have

Z → zzT to ensure that trace goes to 0. Therefore, Xopt → E as

ρ → ∞. �

Proof of Theorem 1: Define a dual variable G. One of KKT

optimality conditions for problem (6) is

(Q − G)Xopt = 0. (12)

Now, we represent G in the same block form as Xopt in (10):

G =

[
D 0
0 d

]
.

Then, the last column of the first equation (12) will be described

by the system of equations:

ρ
n

HT Hz − ρ
n

HT He − Dz − √
ρ
n

HT v = 0
ρ
n

eT HT He − ρ
n

eT HT Hz − √
ρ
n

vT Hz
+ ‖v‖2 + 2

√
ρ
n

vT He − d = 0,

Define ∆z = e − z ≥ 0, where the componentwise inequality

follows from feasibility constraints of (6). The diagonal entries

of dual variables D and d can be written as functions of differ-

ence ∆z:

Di,i

ρ
= − 1

zi

[
1

n
HT H∆z +

1√
nρ

HT v
]

i

, i = 1, . . . , n,

d

ρ
=

1

n
eT HT H∆z+

1√
nρ

vT H∆z+
1

ρ
‖v‖2+

1√
nρ

vT He. (13)

If inequality λmin(HT H) >
√

n/ρ ‖HT v‖1 holds, then matrix H
must be full rank, and according to Lemma 1 we have ∆z → 0 as

ρ → ∞. For sufficiently big ρ it leads to:

1

zi
=

1

1 − ∆zi
= 1 + ∆zi + O

(
(∆zi)

2) .

So, the asymptotic behavior of the sum 1
ρ

∑n
i=1 Di,i can be ex-

pressed as

1
ρ

∑n
i=1 Di,i = − 1

n
eT HT H∆z − 1√

nρ
vT He

− 1
n
(∆z)T HT H∆z − 1√

nρ
vT H∆z

+ O
(

1√
nρ

‖∆z‖2 + ‖∆z‖3
)

.

(14)

From the strong duality we have fSDP /ρ = (d +
∑n

i=1 Di,i)/ρ,

hence, summing (13) and (14) we obtain the asymptotic of the

objective function:

1
ρ
fSDP = 1

ρ
‖v‖2 − 1

n
(∆z)T HT H∆z

+ O
(

1√
nρ

‖∆z‖2 + ‖∆z‖3
)

.
(15)

At the same time, from the exact expression of the objective func-

tion in (11) we can derive the lower bound

fSDP
ρ

= 1
n

Trace(HT H(Z − zzT )) +
∥∥∥ 1√

n
H∆z + 1√

ρ
v
∥∥∥2

≥ λmin(HT H)
n

(n − ‖z‖2) +
∥∥∥ 1√

n
H∆z + 1√

ρ
v
∥∥∥2

≥ λmin(HT H)
n

(2eT ∆z − ‖∆z‖2) + 1
ρ
‖v‖2

+ 1
n
(∆z)T HT H∆z − 2√

nρ
‖HT v‖1‖∆z‖1.

Now, we notice that terms ‖∆z‖2 and ∆zT HT H∆z are definitely

high order term compared to eT ∆z because we know that all en-

tries of ∆z are nonnegative. Taking into account the result in (15)

we can write:

1√
nρ

‖HT v‖1‖∆z‖1 ≥ 1

n
λmin(HT H)eT ∆z + O

(‖∆z‖2) .

Note that eT ∆z = ‖∆z‖1, which leads to

√
n

ρ
‖HT v‖1‖∆z‖1 ≥ λmin(HT H)‖∆z‖1+O

(‖∆z‖2) . (16)

According to Lemma 1 we have ∆z → 0 as ρ → ∞ and the

higher order terms denoted as O
(‖∆z‖2

)
become negligible. For

sufficiently big ρ we must have

√
n

ρ
‖HT v‖1 < λmin(HT H), (17)

since H is a full rank matrix. Then, for such ρ, ‖∆z‖1 should be

equal to 0 for optimality condition (16) to hold. This implies that

z = e whenever (17) holds. Now, recall that Z− zzT must be PSD

matrix, and feasibility constraint requires Z to have ones on the

diagonal. Therefore, PSD matrix Z − eeT will have zeros on the

diagonal which can be true only if Z − eeT = 0. Thus, all entries

of Xopt are equal to 1 which is rank-1 matrix. �

Lemma 2 For any fixed ρ ≥ 0, the optimal objective value fSDP

of SDP (6) satisfies:

1

n
fSDP ≥P

√
12ρ + 1 − 1

9ρ

in probability as n → ∞.

Proof of Lemma 2: The dual problem for (6) has the form:

fSDP := max Trace(G)
s.t. Q − G � 0,

G is diagonal.

Consider a sequence of dual feasible matrices Gn+1 of dimen-

sion n+1 parameterized by α and β which will be chosen later to

ensure dual feasibility:

Gn+1 =

[ − αIn 0
0T β

]
.
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The objective value at Gn+1 is given by f(Gn+1) = β − nα and

serves as a lower bound on fSDP . To ensure that

Q − Gn+1 =

[
(ρ/n) HT H + αI − √

ρ/n HT y
−√

ρ/n yT H ‖y‖2 − β

]

is a PSD matrix in probability as n → ∞, we choose α to be non-

negative, and pick β so that the Schur complement is nonnegative:

(1/n) β ≤P (1/n)yT My,

where M =
(

I − ρ
n

H
(

ρ
n

HT H + αI
)−1 HT

)
. Consider the asymp-

totic behavior of the right hand side as n → ∞. Substitute y =√
ρ
n

Hx + v we get three terms:

1

n
β ≤P ρ

n2
xT HT MHx +

1

n
vT Mv +

1

n

√
ρ

n
vT MHx.

Using the results on the limiting eigenvalue distribution of large

matrices from [7] we can calculate the limits for the first two terms:

lim
n→∞

ρ

n2
xT HT MHx = α − α2

ρ

∫ +∞

0

dG(λ)

λ + α/ρ
(18)

lim
n→∞

1

n
vT Mv =

α

ρ

∫ +∞

0

dG(λ)

λ + α/ρ
, (19)

where G(λ) stands for the limiting empirical distribution of eigen-

values of 1
n

HT H as n → ∞. Let βv = 1
n

√
ρ
n

vT MHx. We note

that E{βv} = 0, and E{β2
v} can be calculated using the results

from [7]:

lim
n→∞

nE{β2
v} = α2

∫ +∞

0

ρλ

(ρλ + α)2
dG(λ) = const.

Therefore, based on Chebyshev inequality we can conclude that βv

goes to 0 in probability as n → ∞. Collecting the results from (18)

and (19) and evaluating the integrals using the Stieltjes transform [7]

we obtain

β

n
≤P α +

1

2ρ

[
(1 − α)

(√
α2 + 4αρ − α

)]
.

This condition ensures dual feasibility of Gn+1. The dual objec-

tive value evaluated at Gn+1, which serves as a lower bound on

the primal optimal value, is given by:

lim
n→∞

1

n
fSDP ≥P 1

2ρ

[
(1 − α)

(√
α2 + 4αρ − α

)]
.

Picking α = 1/3 we arrive at the claim of the lemma. �

Proof of Theorem 3: We can bound E{fSDR} (where the ex-

pectation is taken with respect to the randomization procedure in

Section 2) as follows:

E{fSDR} = E{x̄T Qx̄}
= E

{∑n+1
i,j=1,i�=j Qij x̄ix̄j +

∑n+1
i=1 Qiix̄

2
i

}
=

∑n+1
i,j=1,i�=j Qijvkivkj +

∑n+1
i=1 Qii

≤ vT
k Qvk + Trace(Q)

≤ fSDP + ‖y‖2 + ρ
n

Trace(HT H).

Using the fact that 1
n
‖y‖2 converges to ρ + 1 and ρ

n2 Trace(HT H)
converges to ρ in probability when n → ∞ we can write

1

n
E{fSDR} ≤P 1

n
fSDP + (2ρ + 1). (20)

Now, we have the following chain of inequalities:

1

n
fML ≤ 1

n
fSDR ≤P 1

n
E{fSDR}

≤P 1

n
fSDP + (2ρ + 1)

≤P 1

n

(
1 +

9ρ(2ρ + 1)√
12ρ + 1 − 1

)
fSDP

≤ 1

n

(
1 +

9ρ(2ρ + 1)√
12ρ + 1 − 1

)
fML.

The first inequality is due to the fact that the output of SDP Detec-

tor is a feasible point for the ML detection problem. The second

inequality is satisfied in probability for sufficiently large number

of samples L in randomized rounding procedure. The third in-

equality has been obtained in (20). The fourth one follows from

Lemma 2, and the last one is true because SDP problem (6) is re-

laxation of the original ML detection problem (5). The claim of

Theorem 3 follows from this chain of inequalities. �

5. CONCLUSIONS

The paper presents a performance analysis for the SDP detection

algorithm [5] for a communication link operating at both high and

low SNRs. It has been shown that for any fixed fading H and

noise v there exists an SNR threshold such that the output of SDP

Detector coincides with the solution of the ML detection prob-

lem for all SNR levels above the threshold. This result implies

that for sufficiently high SNR, the ML detection problem allows a

polynomial time algorithm (e.g., SDP Detector) if condition (8) is

satisfied. In low SNR region, the SDP Detector is guaranteed to

generate a log-likelihood value that is within a factor of 5/2 to the

optimal ML log-likelihood value for large systems.
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