
A BRANCH AND BOUND APPROACH TO SPEED UP THE SPHERE DECODER

M. Stojnic, H. Vikalo, and B. Hassibi

California Institute of Technology, Pasadena, CA

ABSTRACT

It is well known that maximum-likelihooddecoding in many
communications applications reduces to solving an integer
least-squares problem which is NP hard in the worst-case.
On the other hand, it has recently been shown that, over
a wide range of dimensions and SNRs, the sphere decoder
can be used to find the exact solution with an expected com-
plexity that is roughly cubic in the dimension of the prob-
lem. However, the computational complexity becomes pro-
hibitive if the SNR is too low and/or if the dimension of
the problem is too large. In this paper, we target these two
regimes and attempt to find faster algorithms by pruning the
search tree beyond what is done in the standard sphere de-
coder. The search tree is pruned by computing lower bounds
on the possible optimal solution as we proceed to go down
the tree. We observe a trade-off between the computational
complexity required to compute the lower bound and the
size of the pruned tree: the more effort we spend in comput-
ing a tight lower bound, the more branches that can be elim-
inated in the tree. Thus, even though it is possible to prune
the search tree (and hence the number of points visited) by
several orders of magnitude, this may be offset by the com-
putations required to perform the pruning. All of which
suggests the need for computationally-efficient tight lower
bounds. We present three different lower bounds based on
spherical-relaxation, on polytope-relaxation and on duality,
simulate their performances and discuss their relative mer-
its.

1. INTRODUCTION

In this paper we are interested in solving exactly the follow-
ing problem

min
s∈D⊂Zm

‖x− Hs‖2, (1)

where x ∈ Rm, H ∈ Rm×m andD refers to some subset of
the integer lattice Zm. The main idea of the sphere decoder
algorithm [1] for solving the previous problem is based on
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finding all points s such that ‖x − Hs‖2 lies within some
adequately chosen radius d, i.e., on finding all s such that

d2 ≥ ‖x− Hs‖2
2, (2)

and then choosing the one that minimizes the objective func-
tion. Using the QR-decomposition H = QR, with Q uni-
tary and R upper triangular, we can reformulate (2) as

d2 ≥ ‖y − Rs‖2
2, (3)

where we have defined y = Q∗
x.

Now using the upper-triangular property of R, (3) can
be further rewritten as

d2 ≥ ‖yk:m − Rk:m,k:msk:m‖2 + (4)

‖y1:k−1 − R1:k−1,1:k−1s1:k−1 − R1:k−1,k:msk:m‖2,

for any 2 ≤ k ≤ m, where the subscripts determine the en-
tries the various vectors and matrices run over. A necessary
condition for (3) can therefore be obtained by omitting the
second term on the RHS of the above expression to yield

d2 ≥ ‖yk:m − Rk:m,k:msk:m‖2. (5)

The sphere decoder finds all points s in (2) by proceed-
ing inductively on (5), starting from k = m and proceeding
to k = 1. In other words for k = m, it determines all one-
dimensional lattice points sm such that

d2 ≥ (ym − Rm,msm)2,

and then for each such one-dimensional lattice point sm de-
termines all possible values for sm−1 such that

d2 ≥ ‖ym−1:m − Rm−1:m,m−1:msm−1:m‖2

= (ym − Rm,msm)2 +

(ym−1 − Rm−1,m−1sm−1 − Rm−1,msm)2.

This gives all possible two-dimensional lattice points and
one then proceeds in a similar fashion until k = 1. The
sphere decoder thus generates a tree, where the branches at
the m−k+1th level of the tree correspond to all m−k+1-
dimensional lattice points satisfying (5). In this manner at
the bottom of the tree (the m-th level) all points satisfying
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(2) are found. (For more details on the sphere decoder and
for an explicit description of the algorithm the reader may
refer to [1, 10, 4].)

The computational complexity of the sphere decoder de-
pends on how d is chosen. In communications we usually
can assume

x = Hs + w, (6)

where the entries of w are independent N (0, σ2) random
variables. In [4] it is shown that, if the radius is chosen
appropriately based on the statistical characteristics of the
noise w, then over a wide range of SNRs and problem di-
mensions the expected complexity of the sphere decoder is
roughly cubic.

The above assertion unfortunately fails and the compu-
tational complexity becomes increasingly prohibitive if the
SNR is too low and/or if the dimension of the problem is
too large. Increasing the dimension of the problem clearly
is useful. Moreover, the use of the sphere decoder in low
SNR situations is also important when one is interested in
obtaining soft information to pass onto an iterative decoder
(see, e.g., [8, 7]). To reduce the computational complexity
one approach is to resort to suboptimal methods based ei-
ther on heuristics (see, e.g., [6]) or some form of statistical
pruning (see [9]).

In this paper, we attempt to reduce the computational
complexity of the sphere decoder while still finding the ex-
act solution. Let us surmise on how this may be done. As
mentioned above, the sphere decoder generates a tree whose
number of branches at each level corresponds to the num-
ber of lattice points satisfying (5). Clearly, the complexity
of the algorithm depends on the size of this tree since each
branch in the tree is visited and appropriate computations
are then performed. Thus, one approach would be to reduce
the size of the tree beyond that which is suggested by (5).
To do so, suppose that we had some way of computing a
lower bound on the optimal value of the second term of the
RHS of (4):

LB = LB(y1:k−1, R1:k−1,1:m, sk:m) ≤

min
s1:k−1∈D⊂Zk−1

‖y1:k−1 − R1:k−1,1:k−1s1:k−1 − R1:k−1,k:msk:m‖2,

where we have emphasized the fact that the lower bound is
a function of y1:k−1, R1:k−1,1:m, and sk:m. Provided our
lower bound is nontrivial, i.e., LB > 0, then we can replace
(5) by 1

d2 − LB ≥ ‖yk:m − Rk:m,k:msk:m‖2. (7)

This is certainly a more restricted condition than (5) and so
will lead to the elimination of more points from the tree.
Note that (7) will not result in missing any lattice points

1LB = 0, of course, simply corresponds to the standard sphere de-
coder.

from (2) since we have used a lower bound for the remainder
of the cost in (4).

Now clearly, the tighter the lower bound LB, the more
points that will be pruned from the tree. Of course, we
cannot hope to find the optimal lower bound since this re-
quires solving an integer least-squares problem (which was
our original problem to begin with). Therefore in what fol-
lows we shall consider obtaining lower bounds on the inte-
ger least-squares problem

min
s1:k−1∈D⊂Zk−1

‖z1:k−1 − R1:k−1,1:k−1s1:k−1‖
2, (8)

where we have defined z1:k−1 = y1:k−1 −R1:k−1,k:msk:m.
We consider two main methods of constructing lower bounds.
One is to enlarge the search space (so-called relaxation). In
sections 2 and 3, respectively, we relax the search space to a
sphere and polytope, that includeD. In both cases the relax-
ation results in a convex problem that can be readily solved.
The other is to use duality. In section 4, we show that the
dual problem to (8) is an SDP and can also be readily solved.
However, since (8) is non-convex there is a non-zero duality
gap and so we obtain a strict lower bound. As expected, we
will observe that the more computational effort that is de-
voted to obtaining a lower bound, the more pruning of the
tree that will be obtained.

Finally, we should mention that for simplicity we will
henceforth assume that D = {− 1

2
, 1

2
}k−1, which corre-

sponds to BPSK modulation (or QPSK modulation, in the
complex case). The lower bounds of sections 2 and 3 are
straightforward to generalize to larger constellations. How-
ever, generalizing the method of section 4 will require some
effort.

2. SPHERICAL RELAXATION

Let LBsph = ‖z1:k−1−R1:k−1,1:k−1ŝ1:k−1‖2
2 where ŝ1:k−1

is the solution of the following optimization problem

min
s1:k−1

‖z1:k−1 − R1:k−1,1:k−1s1:k−1‖
2
2

subject to
k−1∑
i=1

s
2
i ≤

k − 1

4
. (9)

The algorithm which solves (9) can be summarized as fol-
lows

1. Compute the SVD of R1:k−1,1:k−1, R1:k−1,1:k−1 =
UΣV T , V = [v1, ...,vk−1],

2. Set z1:k−1 = UT
z1:k−1 and r = rank(R1:k−1,1:k−1)

3. If
∑r

i=1
( zi

σi

)2 > k−1

4

Find λ∗ such that
∑r

i=1
( σizi

σ2

i
+λ∗

)2 = k−1

4
.

ŝ1:k−1 =
∑r

i=1
( σizi

σ2

i
+λ∗

)vi
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else
ŝ1:k−1 =

∑r

i=1
( zi

σi
)vi

end

The complete derivations of the previous algorithm and the
proof that it indeed exactly solves (9) can be found in [3].
The SVD decomposition makes the complexity of the previ-
ous algorithm cubic. However, since the matrix R does not
change while searching the tree, SVD’s of its upper-left mi-
nors can be done before applying the sphere decoder. Then
the operations that need to be done per each visited node in
the tree are only of quadratic complexity. Also, it is worth
mentioning (and it can be found in [3] as well) that although
we constrained s1:k−1 to lie inside the ball of the radius k−1

4

in (9), the optimal value is achieved on the boundary of the
ball, i.e. it holds that ‖ŝ1:k−1‖2

2 = k−1

4
. We refer to the

modification of the sphere decoder algorithm based on using
LB = LBsph in (7), as the SPHSD-algorithm and give its
performance in Figure 1. The simulation results presented
in Figure 1 (and in figures later in the paper) are obtained
with the radius initially chosen as suggested in [4] and up-
dated each time we reach the bottom of the tree. For Figure
1 we have chosen m = 30 and so snr = 10log10

m
4σ2 , where

σ2 is the variance of each component of the noise vector
w. As can be seen, the total flop count of the standard
sphere decoder is improved at low SNRs. Also on Figure
1, the distributions of the number of visited nodes per level
in the search tree are shown. It can be seen that a signif-
icant number of nodes have been pruned by the suggested
modification. However, the large improvement in the prun-
ing of the search tree, results in a moderate improvement in
the flop count. The reason is that although the total number
of visited points in the tree is decreased, the computational
complexity per node is increased from the linear one in the
standard sphere decoding (SD) algorithm to the quadratic
one in the modified (SPHSD) version.
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Fig. 1. Spherical relaxation for m = 30

3. POLYTOPE RELAXATION

Let LBplt = ‖z1:k−1−R1:k−1,1:k−1ŝ1:k−1‖
2
2 where ŝ1:k−1

is the solution of the following optimization problem

min
s1:k−1

‖z1:k−1 − R1:k−1,1:k−1s1:k−1‖
2
2

subject to −
1

2
≤ si ≤

1

2
, 1 ≤ i ≤ k − 1. (10)

The optimization problem in (10) is convex and hence it is
exactly solvable in polynomial time. To solve it we use the
quadprog function from Matlab which is based on a reflec-
tive Newton method suggested for solving this type of the
optimization problem [2]. We refer to the modification of
the sphere decoder algorithm based on using LB = LBplt

in (7), as the PLTSD-algorithm and give its performance
in Figure 2. The simulation results presented in Figure 2
are obtained for m = 40 and snr = 10log10

m
4σ2 , where

σ2 is the variance of each component of the noise vector
w. From Figure 2 it can be seen that a large number of the
points in the bottom part of the tree have been pruned in
comparison with the classical sphere decoder. However, the
computational complexity per point is increased from linear
to cubic.
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Fig. 2. Polytope relaxation and duality-based lower bound
for m = 40

4. DUALITY-BASED LOWER BOUND

The problem given in (8) can be reformulated in the follow-
ing way

min
s1:k−1∈{−1,1}k−1

[
s1:k−1

1

]T

Q

[
s1:k−1

1

]
, (11)

where

Q =

[
1

4
RT

1:k−1,1:k−1R1:k−1,1:k−1 − 1

2
RT

1:k−1,1:k−1z1:k−1

− 1

2
z

T
1:k−1R1:k−1,1:k−1 z

T
1:k−1z1:k−1

]
.

Clearly, since

[
s1:k−1

1

]T

Q

[
s1:k−1

1

]
≥

[
s1:k−1

1

]T

Λ

[
s1:k−1

1

]
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if s1:k−1 ∈ {−1, 1}k−1 and Q − Λ � 0, a lower bound on
the optimal value of the objective function in (11) can be
obtained as the solution to

max Tr(Λ)

subject to Q � Λ, Λ is diagonal. (12)

The optimization problem (12) is convex. In fact, it is the
dual problem to (11). A variety of optimization methods
for solving problem (12) can be found in [5]. We solve it
exactly using interior point methods. Denote by Λ̂ the opti-
mal value of the optimizing variable in (12). Let LBsdp =

Tr(Λ̂). We refer to the modification of the sphere decoder
algorithm based on using LB = LBsdp in (7) as the SDPSD-
algorithm and give its performance in Figure 2. Again,
the simulation results are obtained for m = 40 and snr =
10log10

m
4σ2 , where σ2 is the variance of each component of

the noise vector w. From Figure 2 it can be seen that the
number of visited points (either in total or per level) in the
search tree of SDPSD-algorithm is several order of magni-
tudes less than the corresponding one of the SD-algorithm.
Although the number of the visited points in the tree is cut
down by several thousands times the computational com-
plexity per node is increased, since solving the optimiza-
tion problem (12) in each node on the level m − k + 1 has
the complexity of O((k − 1)3.5). However, comparing the
numbers of the points in the search tree among the three
suggested lower bounds, it is obvious that the duality-based
lower bound prunes the tree the most. Hence, it would be
very useful if we can find some efficient (at most quadratic,
but preferably linear) way to compute the optimal value of
the objective function in (12), or at least to find a good lower
bound to it.

5. SUMMARY AND DISCUSSION

In this paper we attempted to improve the computational
complexity of the sphere decoder in the regimes of low SNR
and/or high dimensions, by further pruning points from the
search tree. The main idea was based on computing a possi-
ble lower bound on the remainder of the cost function as we
descend the search tree (the standard sphere decoder simply
uses a lower bound of zero). If the sum of the current cost
at a given node and the lower bound on the remaining cost
from that node exceeds the cost of an already found solution
then that node (and all its descendants) are pruned from the
search tree. In this sense, we are essentially using a “branch
and bound” technique.

We proposed three possible ways of computing lower
bounds based on spherical relaxation, on polytope relax-
ation and on duality. All three methods significantly reduce
the number of points in the search tree (in fact, by several
orders of magnitude), with the duality-based method prun-
ing the most and the sphere-relaxation method pruning the

least. However, most of this gain is offset by the compu-
tations required to perform the pruning so that, all in all,
we obtain modest computational savings (about a factor of
10) at low SNR. An interesting feature of our methods is
that the number of points visited, and hence the compu-
tational complexity, is relatively independent of the SNR,
something that is certainly not true of the standard sphere
decoder. Our results suggest the need for computationally-
efficient good lower bounds. In particular, a lower bound
that requires only quadratic computations per node, but that
is tighter than the sphere-relaxed lower bound, would be
very useful. This seems worthy of further scrutiny and is
currently being explored.
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