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ABSTRACT

Water-filling is the technique that computes the input data covari-
ance matrix that achieves capacity in Gaussian paraller or block
channels. A suboptimal precoding scheme, that has been observed
to perform quite close to water-filling in some cases of great inter-
est is when all “active” eigenvectors of the input data covariance
matrix receive the same power. Both techniques require perfect
channel knowledge at the transmitter. We consider the suboptimal
precoding scheme when at the transmitter we use a channel esti-
mate as if it were the true channel and we derive a closed form
expression relating the channel estimation error covariance matrix
with the mean mutual information decrease. We observe that seri-
ous error magnification may happen if the channel matrix is badly
conditioned and the SNR is high.

1. INTRODUCTION

Block-based transmission is common in communications. If the
channel is known at the transmitter, due to, e.g., feedback, then
it is possible to maximize the information rate by precoding the
channel input. This problem has been considered for frequency
selective channels in [1] and for flat fading MIMO channels in [2],
which compute the input data covariance matrix that maximizes
the mutual information between the channel input and output. It
turns out that the eigenvectors of the optimal input covariance ma-
trix are the right singular vectors of the channel matrix while its
eigenvalues are computed through water-filling using the (squared)
singular values of the channel matrix. An important observation of
[1] is that a suboptimal input data covariance matrix having all its
non-zero eigenvalues equal leads, in some important cases, e.g.,
DSL, to a mutual information that almost coincides with that ob-
tained through water-filling.

A question that is directly related with the practical success of
these precoding schemes concerns their sensitivity with respect to
channel and noise statistics inaccuracies. In this work, we consider
the sensitivity of the suboptimal approach with respect to channel
estimation errors. This problem is of importance because (a) the
suboptimal approach has been observed to be close to the opti-
mal in many cases of great interest (DSL, high SNR) and (b) the
study of the suboptimal approach is tractable and may be the first
step toward the study of the water-filling, that is certainly more de-
manding. Our main result is a closed form expression relating the
channel estimation error covariance matrix with the mean mutual
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information decrease. We observe that significant error magnifica-
tion may arise when the channel matrix is badly conditioned and
the SNR is high.

2. CAPACITY ANALYSIS OF BLOCK-BASED SYSTEMS

2.1. The channel model

We consider the baseband-equivalent discrete-time noisy commu-
nication channel modeled by the � -th order linear time-invariant
system with input-output relation

� � � �� � � � 	
� 
 � � � �  � (1)

where 	 �� � 	 � � � � 	 � � � (superscript � denotes transpose)
is the channel impulse response vector and


 � ,

 � and � � de-
note, respectively, the samples of the channel input, noise and

output. Considering the data vectors � �� � � � � � � � � � � � � � � ,
 �� � 
 � � � � � � � � 
 � � � � � and

 �� �  � � � � � � � �  � � � , we
may rewrite (1) in matrix form as � � � 
 � 

, where � is the� � � � � � � filtering matrix defined as

� �� ��
� 	 � � � � � � � 	 �

. . .
. . .

	 � � � � � � � 	 �
�  
! �

The noise samples are assumed to be samples of a complex-valued
zero-mean white circularly symmetric Gaussian stationary stochas-

tic process with covariance matrix " # # �� $ �   % � � � � & � ,
where superscript

%
denotes Hermitian transpose and & �

denotes
the ' � ' identity matrix. The input symbols are assumed to be
complex-valued zero-mean circularly symmetric Gaussian (in or-

der to achieve capacity) with covariance matrix " ( ( �� $ � 
 
 % � .
2.2. Capacity analysis: the ideal case

A problem that has been considered in [1] and [2] is the compu-
tation of the input covariance matrix that maximizes the mutual
information & � ) * + � between the input

)
and the output

+
of

the above block channel. Toward this end, the following singular
value decompositions are useful:� � , � - . � / 0� 1 2 3 %� � � (2)
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� �� � � � � � � � � � � � 	 � � �� � � � � � � � � �� (3)

where � 
 , � � � � � � � � �  � , is the matrix with columns the �
eigenvectors of

�
associated with its � largest eigenvalues, and� 
 �� � � � 	 � 
 � � � � � � 
 
 � , with


 �
being the � -th largest eigenvalue

of
�

. It turns out that the optimal solution is [1], [2]

� � � � � � � � � � � � � 	 � � � � � � � � � � � 	 � � � � � 	� � � �� � � �� � �
where terms

� �
, � � � � � � � � �

are computed through water-filling
using the eigenvalues of

�
. A suboptimal approach, which has

been observed to be very close to the optimal in some cases of
great interest [1], is to assume that all the non-zero eigenvalues of� � � � � are equal, i.e.,

� � � � � � � � � � � � � �� � � � ��
, where �

is the total input power and �� � �
. In this case, the input data

covariance matrix is � � � � � � �� � � �� . If we define the operator� � � � as the product of the non-zero eigenvalues of matrix � ,
then the mutual information per input sample between the channel
input and output in the suboptimal case is given by [1]

� � � � � � � ��  � � � 	 � � � � �� � � � � 
� �� � � � � � �� ��  � � � 	 � � � �� �

� � ��  � �� � �� � � (4)

where superscript � denotes the pseudo-inverse. If we define� �� � ��  � �� � �� (5)

then

� � � � � � � ���  � � � 	 � � �� � �� � � � 
 ��  �

��� �  � � � 	 � ! � � � � �

3. CAPACITY UNDER CHANNEL MISMATCH

3.1. The framework

In practice, we do not know the true channel ! but, instead, its
estimate "! . Using at the transmitter "! as if it were the true channel,

we compute "� �� "� � "� � "� � "� � "� �� . In this case, we consider
as “optimal” the input covariance matrix "� � � � � "� �� "� � �� .

We define the errors in "! , "� and "� 
 and the first-order error
in "�

as follows:# !
�� "! $ ! � # � �� "� $ � � # � 
 �� "� 
 $ � 


# � �� "� $ � � � � # �  # � � �  % � & & # ! & & � � (6)

where
& & � & &

denotes the norm of the vector or matrix argument
(since all norms are equivalent in finite dimensional vector spaces,
we do not fix the norm at this point). The corresponding mutual
information between the channel input and output is given by

"� � � � � � � ��  � � � 	 � � � � �� � � � �  "� �� � � "� � � �� ��  � � � 	 � � � �� � � �  # � � �

� '  ��  �
��� �  � � � 	 � ! � � �  # � � (7)

where# � � # � � �� � �� � ��  � �� � � �� # � ��  # � � �� � � � � � �� # � �� �
(8)

3.2. The tools from matrix perturbation theory

In order to study the influence of the channel estimation errors to
the mutual information, we must relate the eigenvalues ! � � � � and! � � �  # � � and the invariant subspaces � �� and "� �� . To this
end, we shall use two results of matrix perturbation theory. The
first can be easily deduced from Theorem 2.7 of [3, p. 236].

Theorem 1: Let � � �� � ( �� � be unitary and suppose that ) � � �� � ,) � � ( �� � are simple invariant subspaces of the
� �  � � " � �  � �

Hermitian matrix
�

. Then, under certain conditions, there exists a
unique

� �  � $ �� � " ��
matrix * , such that"� �� � � � ��  � ( �� * � � � ��  * � * � # � $ �

(9)

and "� ( �� � � � ( �� $ � �� * � � � � � � � # ��  * * � � # � $ �
(10)

form orthonormal bases for simple orthogonal invariant subspaces
of

�  # �
(note: ) � � � is the column space of matrix � ).

Remark: The exact sufficient conditions guaranteeing the ex-
istence of such a * are stated in [3, p. 236]. Loosely speaking,
we can find such a * if the perturbation

# �
is sufficiently smaller

than the gap between the smallest eigenvalue associated with � ��
and the largest eigenvalue associated with � ( �� . In this case, *
can be computed by solving a non-linear matrix equation. More
specifically, since ) � "� �� � and ) � "� ( �� � are orthogonal invariant
subspaces of "�

, we have [3, p. 220]"� ( ��� "� "� �� � 	
leading to � � ( ��� $ * � � �� � � �  # � � � � ��  � ( �� * � � 	
which is non-linear in * . Thus, it is very difficult to find a closed
form expression for * . If a solution * exists, then * � % � & & # � & & �
[3, p. 236]. By ignoring higher-order terms, that is, terms involv-
ing products of * and

# �
, we construct the linearized version of

the above equation for the first-order approximation +* of * , as:� ( �� +* $ +* � �� � $ � ( ��� # � � �� (11)

where � ( �� � � � � 	 � 
 �� � � � � � � � 
 � � 	 � � � � � 	� � � �� � �
Note that +* � *  % � & & # � & & � � . Using the property of the vector-
ization operation, - . � � / 0 � � � 0 % 1 � � , - . � / �
where 1 denotes the Kronecker product, we obtain the closed form
expression for +*� � �� 1 � ( �� $ � �� 1 � � � � # �� � , - . � +* � � $

, - . � � ( ��� # � � �� � � (12)

The next result can be deduced from Theorem 2.3 of [3, p. 183].
Theorem 2: For Hermitian matrices

�
and

# �
, if ! � � � � is a

simple eigenvalue of
�

with associated eigenvector 2 �
, then there

exists ! � � �  # � � unique eigenvalue of
�  # �

such that! � � �  # � � � ! � � � �  2 �� # � 2 �  % � & & # � & & � � � (13)
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4. PERTURBATION ANALYSIS

4.1. Second-order approximation to
� �

In this subsection, we derive a second-order approximation to
� �

.
Initially, the approximation is given in terms of � , and since � is
difficult to compute in closed form, we derive the corresponding
approximation in terms of �� .

We start with an approximation to
� � �� � � � � � � � � 	

. Let the
SVD of � be � 
 � � � �  �

�
(note

� � � � � 	 
 � � � � � � 	 
 � � � � � � � � 	 � ).
Then,� �� � � � � 
 � �� �  � � �

� � �  �
� 
  � � � �� � � �

� � � �  �
� �

Using the Taylor expansion
� � � � 	 � � � � 	 
 � 	 �	 � 	 � � � � � � ,

we obtain� � �� � � � � � � � � 	 
  � � � �� � � �
� � � � � � � 	  �

�

  � 
 � �� 	 �� � �

� � � � � � � � � � � � � � �  �
�


 � �� 	 �� � � � � � � � � � � � � � � � (14)

If we define � � �
 � � � �� � � � � � � � � 	
(15)

then (9) and (14) give

�� �� 
 � �� 	 �� � �� � � � � �  �� � � � � � � � � � � � � �
leading to� � �� 
 	 �� � �� � � � � �  �� � � � � � � � � � � � � � �
The error terms appearing in

� �
become (see (8))� � � �� � �� 
 	 �� � � � � � � � � � � � � � �

and (after some calculations)� � � �� � � � � � �� � � �� 
 � �� �  �� � � � � � � � � � � � � �
leading to� � 
 	 �� � �� � � � 	 �� � � � � �� � � �� �  �� � � � � � � � � � � � � � �
Using the facts that � 
 � � � � � � � � � and �� 
 � � � � � � � � � � 	 � ,
the expansion (14) and the definition of � �

in (15), we can show�� � �� 
 � �� � � � � � � � � � � � � � 
 � � � � � � � � � � � � � �
��

� �  �� �� 
 �
�� �  �� � � � � � � � � � � � � �

and thus we may approximate
� �

as� � 
 	 �� � �� �� �
�� 	 �� �� �

�� � �� � �� � �  �� �� � � � � � � � � � � � �
(16)

4.2. Second-order approximation to
� � � � � �

Since
�

is diagonal, its eigenvectors are the canonical vectors � �
,

i.e., vectors with 1 at the � -th position and zeros elsewhere. Then,
using Theorem 2 and (16), we obtain� � � � � � �
 � � � � � � � � 	 � � � � � 
 � �� � � � � � � � � � � � � � 	 �
 	 � �� �� � � � � � � � � � �� 	 �  �� �� � � �� � �� � � � � � � � � � � � � � � (17)

(Note that
� � � � � � � � 
 � � � � �� � � 	 � 
 � � � � � � � � 	 � ).

4.3. Second-order approximation to
� � � � � � �

Using (7) and (17), we obtain an approximation to �� � � � � � as:

�� � � � � � 
 � � �� � �
��� � � � � � � 	 � � � � � � � �


 � � �� � �
��� � � � � � � 	 � � � � � � � � � � � � � �


 � � �� � �
��� � � � � � � 	 
 � � � � � 
 � � � � � � � �� � � � � � �


 � � � � � � � �� � �
��� � � � � � � 	 
 � � � � � � � �� � � � � �

� � �
 � � � � � � � � � � 	 �� � �
��� � � �

� � � � � �� � � � �
� � � � � � � � 	 � (18)

where in
� 	 � we used the expansion � 
 � � � � � � 
 � � � � � � � � � 	 � .

Thus, a second-order approximation of
� � � � � � � is

� � � � � � � 
 � � � 	 �� � �
��� � � � �� � � � � � �� �� � � � �� � � � � � � � � � � � � � �

In the sequel, in order to simplify notation, we shall omit the

� � � �
terms, which are obvious from the above analysis.

4.4. Computation of the mean mutual information decrease

We assume that the channel estimation error
� � is zero-mean, cir-

cular, i.e., � � � � � � �  
 � � � � � � � � � � � � , with covariance matrix � � �
 � � � � � �
�

 and we derive a second-order approxima-
tion of the mean mutual information degradation due to channel
inaccuracies as

� � � � � � � � �  
 � � � 	 �� � �
��� � � � �� � � � � � � � � � � �� �� � � � �� � � � �

(19)
where the expectation is with respect to the channel errors. Due to
space limitation, we consider only the case �� 
 �

(the general
case is treated in [5]).

4.4.1. Case �� 
 �
In this case, �  �� 
 � � � � , which using (11), (6) and (17) gives

�� 
 �  ��� � ! �  �� � � � � 	�� � � � 
 � � � � � � � �� �
If we denote by �

�
, � 
 � � � � � � ��

, the � -th column of  � , we
obtain �� � � 
 � � � � 	� �  ��� � ! �

�
�
, giving� � � � �� � � � 
 � � � � 	� �

� �� � �  ��� �� � � �� �
� � � � � ! � � �

It can easily be verified that� � � � � ! � � 
 "# � � � � � � � � � �� � � � � � � �  � � � �
$%� � � ��

�� � (20)
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where �
�
is the � -dimensional vector composed of 1’s and �� � is

the complex conjugate vector of
� � . Thus,

� � �
�

��
��

� � �
�� �

�
� � � � � � � � � 	 � �� �

� � � � 	 � �� �
� � �

�� � � � � � � �� � � � � � � � �� � �
Using (19), we obtain

	 � � 
 � � �  � � � 
 � � � �� � �
�� � � � �

�
� � � � � � �

� �� � � � � �� � � � �
� 
 � � � �� � � � � ��

� �� � � � �� �� � � � �
�

� � � � � �� � � �� � �� �
Using the relation � �� � � � � ��

�
� ��

� � � � � �
�� � and�� � � � �

�
� � � � � �� � � � �� � � � � � �� � � � � � �

��� � � ��
we obtain

	 � � 
 � � �  � � � 
 � � � �� � � � � � � �� � � � 	 � � � (21)

The term that may significantly magnify the channel estimation
errors is

� � �
, which is large if

� � and
� 
� are small.

An intuitively satisfying fact that can be observed in the above
expression is that, for fixed channel (that is, fixed

� �
, � � and � �� )

and fixed channel estimation error covariance matrix, the mean
mutual information degradation increases for increasing the SNR,
that is, decreasing

� 
� .

5. SIMULATIONS

In this section, we use numerical simulations to illustrate our theo-
retical results. The power per input data sample is � � � � and the
total input power is � � � � � , with block length

� � � � . The
power of the additive white Gaussian noise is

� � and the SNR is

defined as  � � �� � �� 
 . The true channel has order � � � and is

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
In Fig. 1, we plot the mutual information 
 � � �  � that results
from water-filling and the sub-optimal approach, for �� � �

(us-
ing the true channel � ). We observe that for SNR higher than 4 dB,
the two quantities practically coincide, supporting the observations
of [1].

In order to check the accuracy of our approximation, we as-
sume that the channel is estimated using

� � � � � 	
data samples of

an ideal training sequence, giving that � � � � � 
� � 
 � � � �  � 
  ! � [4,

p. 788]. In Fig. 2, we plot the experimentally computed (over � � �
independent noise realizations) mean mutual information degrada-
tion and the corresponding second-order approximation (21), for
varying the SNR. We observe that for SNR higher than 15 dB the
two quantities coincide, showing the usefulness of our approxima-
tion. A more extensise simulation study appears in [5].
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Fig. 1. Mutual information per sample: water-filling (solid line),
suboptimal scheme (‘o-’) versus SNR.
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Fig. 2. Experimental mutual information decrease (solid line) and
second-order approximation (‘o-’), versus SNR.
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