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ABSTRACT

We address the problem of linear mean square error (MSE) trans-

mitter design for point-to-multipoint multiuser systems, where the

transmitter is equipped with multiple antennas and each of the in-

dependent receivers has a single antenna. This downlink scenario is

more difficult to handle than its uplink counterpart since all users

are coupled by transmit filters and powers. Our main result is to

show that downlink and uplink share the same normalized MSE

achievable region under a sum power constraint. Thus, the prob-

lem of downlink transmitter design can be solved by focusing on an

equivalent uplink problem, which has a more suitable structure and

allows for efficient algorithmic solutions. As application examples,

we solve the problem of minimizing the maximal normalized MSE

of all users (fairness), and the problem of minimizing the sum of

all normalized MSE (overall efficiency).

1. INTRODUCTION

The mean square error (MSE) between the transmitted and received

data symbols is an important performance measure for multiuser

communication systems dominated by mutual interference. While

MSE optimization strategies are known for the uplink receiver de-

sign, see e.g., [1,2], finding the optimal point-to-multi-point down-

link transmitter is a complex problem, which involves the joint op-

timization of all transmit powers, pre-equalizers, and receivers.

1.1. Problem Statement

In this paper we propose a framework for MSE transmitter design

based on uplink/downlink duality. We consider a system with M
transmit antennas and K decentralized single antenna receivers, as

depicted in Fig. 1. Note, that the same vector-valued model holds
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Fig. 1. Downlink system model

for synchronous DS-CDMA with fixed receivers, as well as for

digital subscriber line (DSL) services, where many twisted pairs of

telephone lines are bundled together in one cable leading to inter-

ference between users.
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Assume unity-energy random transmit symbols d = [d1, ..., dK ]T

i.e., E{dd∗} = I and zero-mean white Gaussian noise n = [n1, ..., nK ]T

∼ N (0, σ2
nI). The vector q = [q1, ..., qK ] contains the transmis-

sion powers. We define Q = diag{q}. The normalized beam-

forming matrix U = [u1, . . . , uK ], with ‖ui‖2 = 1, is used to

map the signal vector d onto the M transmit antennas. The signal

received by the ith user is scaled by βi/
√

qi, where βi adds addi-

tional degrees of freedom which can be used for MSE optimization.

The estimated symbol is

d̂i =
βi√
qi

(h∗
i U
√

Qd + ni) ∀i ∈ {1, 2, . . . , K} , (1)

where hi ∈ C
M×1 models the channel between the ith user and the

base station array and (·)∗ denotes the conjugate transpose. Thus,

the individual normalized MSE is given as

εDL
i = E{|d̂i − di|2} = E{|x̂i − xi|2}/pi ∀i . (2)

These quantities are coupled by the transmit filters U and trans-

mit power allocation q. Thus, choosing a joint transmit design

means to finding an “optimal” trade-off between the individual

MSE’s. Since we are concerned with independent receivers, the

notion of optimality clearly depends on the overall system design.

That is, the desired MSE trade-off may be determined by higher

layer requirements, like bit error rates, queuing priorities, latency

constraints, etc. In the following we will focus on the following

two design goals:

P1: optimal overall efficiency

min
U,β,q

K∑
i=1

εDL
i s.t. ‖q‖1 ≤ Pmax , (3)

P2: min-max fairness

min
U,β,q

(
max

1≤i≤K
εDL

i

)
s.t. ‖q‖1 ≤ Pmax . (4)

1.2. Related Work

In [3–6] problem P1 has been studied for the uplink, where pre-

coders at mobile terminals and MMSE decoder at base station are

jointly adjusted to minimize the MSE. It was studied in [3, 4] for a

multiple-input-multiple-output (MIMO) single user scenario, and

in [5] for a MIMO multiuser scenario. A weighted MSE opti-

mization problem was proposed in [6], where different weights can

lead to different optimization problems, e.g., maximum informa-

tion rate, QoS-based design, etc.

For the downlink, a similar transmit optimization strategy was

introduced in [7] (TO-MIMO) and in [8] (Transmit Wiener Filter,

TxWF), which minimizes the modified MSE E{‖x̂ − αx‖2} by

III - 4090-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



introducing a factor α. However, scaling all received signals by the

same factor is generally not an optimum strategy. Better results are

expected by using a vector scaling. Our proposed strategy employs

different scalars for different users. This leads to a performance

improvement over the TxWF, as will be shown in the simulation

results. Additionally, in our scheme, adaptive power control can be

applied to minimize the normalized MSE over all possible power

allocations.

Problem P2 was only studied in an uplink context [2]. The

downlink problem will be addressed in this paper. In [9], a similar

problem was studied in the context of SINR balancing for single-

input-multiple-output (SIMO) links. We will make use of this strat-

egy later in Section 3, where an algorithmic solution for P2 will be

proposed.

2. UPLINK/DOWNLINK NORMALIZED MSE DUALITY

It is important to constrain the transmit power, otherwise the op-

timization yields a zeroforcing solution [10]. On the other hand,

power-constrained optimization problems of the form (3) and (4)

are difficult to handle directly, which shows the analysis in [7, 8,

10]. Thus, it would be desirable to establish a duality between MSE

optimization in uplink and downlink, similar to the one that was

recently observed in the context of SINR optimization [9, 11]. Al-

though the relationship between the downlink SINR and the MSE

is not as straightforward as for the uplink, it will be shown in the

following, that uplink and downlink indeed share the same MSE

achievable region. This will be used later in Section 3 to derive

solutions for the optimization problems P1 and P2.

2.1. Equivalent Uplink Model

We start by considering the uplink model that is obtained by switch-

ing the role of transmitter and receiver (see Fig. 2). The symbol

vector d is now transmitted from K independent antennas over the

propagation channel H = [h1, ..., hK ]. The matrix U∗ now acts

as a multiuser receiver, which separates the data streams. For con-

venience, we introduce Ũ = Uβ, where the norm of each column

in U is equal to one, and β = diag{[β1, ..., βK ]} is a diagonal

matrix containing the column norms of Ũ . For reasons that will

become clear later, we assume that the quantities H , U , β, are the

same as for the downlink model. The power allocation p, however,

may be different from the downlink allocation q. It is assumed that

both links have the same sum power constraint, i.e., ‖p‖1 ≤ Pmax

and ‖q‖1 ≤ Pmax. We define P = diag{p}. With the received

signal y = H
√

Pd + n , the ith estimated symbol becomes

d̂i =
βi√
pi

u∗
i (H

√
Pd + n). (5)

and the normalized MSE is

εUL
i = E{|d̂i − di|2} = E{|x̂i − xi|2}/pi . (6)

n
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Fig. 2. Equivalent uplink system with K independent transmitters

(single antenna) and joint multiuser reception.

2.2. Duality Relationship between Uplink and Downlink MSE

Next, we compare the achievable uplink MSE (6) with the down-

link MSE (2) under a total power limit Pmax. To this end, we

rewrite the downlink MSE εDL
i as

εDL
i = β2

i h∗
i UQU∗hi/qi

− βih
∗
i ui − βiu

∗
i hi + 1 + β2

i σ2
n/qi . (7)

The uplink MSE is

εUL
i = β2

i u∗
i Zui/pi − βih

∗
i ui − βiu

∗
i hi + 1 , (8)

where Z = HPH∗ + σ2
nI .

It can be observed that εUL
1 , . . . , εUL

K can be optimized inde-

pendently. Collecting all optimizers in a matrix Ũmmse, we have

Ũmmse = (HPH∗ + σ2
nI)−1HP . (9)

Direct optimization of (7) is difficult, however. In the following, we

derive a framework for an indirect optimization approach based on

duality. Instead of solving problems (3) and (4) directly, a solution

can be found by solving an equivalent uplink problem.

To this end, we need the following lemma, which characterizes

the condition under which expressions (8) and (7) are equal.

Lemma 1. Let U and β be fixed parameters, and suppose that
SINR values γ1, . . . , γK are achieved by uplink and downlink power
allocations P = diag{[p1, . . . , pK ]} and Q = diag{[q1, . . . , qK ]},
respectively, then εDL

i = εUL
i , ∀i ∈ {1, 2, . . . , K}.

Proof. The uplink SINR is given by

SINRUL
i =

piu
∗
i hih

∗
i ui

u∗
i Ziui

, (10)

where Zi = Z − pihih
∗
i . The downlink SINR is

SINRDL
i =

qih
∗
i uiu

∗
i hi∑K

j=1
j �=i

qjh
∗
i uju∗

j hi + σ2
n

=
qiu

∗
i hih

∗
i ui∑K

j=1 qjh
∗
i uju∗

j hi − qiu∗
i hih

∗
i ui + σ2

n

=
u∗

i hih
∗
i ui

h∗
i UQU∗hi/qi − u∗

i hih
∗
i ui + σ2

n/qi
. (11)

With (10), (11) and the given condition SINRDL
i = SINRUL

i , we

get

h∗
i UQU∗hi/qi − u∗

i hih
∗
i ui + σ2

n/qi = u∗
i Ziui/pi . (12)

Substituting Zi = Z − pihih
∗
i into (12) and multiplying with β2

i

on both sides, we obtain

β2
i u∗

i Zui/pi = β2
i h∗

i UQU∗hi/qi + β2
i σ2

n/qi . (13)

Combining (13), (7) and (8), we can conclude that

εDL
i = β2

i u∗
i Zui/pi − βih

∗
i ui − βiu

∗
i hi + 1

= εUL
i . (14)

�
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It can be observed that the scaling matrix β does not change

the SINRs, but affects the individual normalized MSE.

Combining Lemma 1 with the uplink/downlink duality [9,11],

we can show that uplink and downlink have the same MSE achiev-

able region.

Theorem 1. Given U , β, and a total power limit Pmax, normal-
ized MSE values ε1, . . . , εK can be achieved in the uplink if and
only if the same values can be achieved in the downlink. Thus,
both links have the same achievable region under a sum power
constraint.

Proof. Suppose that uplink MSEs ε1, ..., εK , are achieved with U ,

β and power allocation p, ‖p‖1 ≤ Pmax. This signaling strategy is

associated with uplink SINRs γ1, ..., γK . Thus, p is characterized

by

p = σ2
n(D−1 − ΨT )−11K ,

where 1K is the all-one vector and

D = diag
{[ γ1

|u∗
1h1|2 , . . . ,

γK

|u∗
KhK |2

]}
,

and

Ψik =

{
|u∗

khi|2 k �= i

0 k = i .

We have [9, 12]

‖p‖1 = 1T
K p = σ2

n1T
K

(
(D−1 − Ψ)−1)T 1K

= σ2
n1T

K (D−1 − Ψ)−11K = 1T
K q = ‖q‖1, (15)

where q is the downlink power allocation that achieves the same

SINR values γ1, . . . , γK with the same filter U and with the same

total power, i.e., ‖q‖1 ≤ Pmax. (Note that the scaling matrix β
does not change the SINRs.) From Lemma 1 we know that U ,

β and q achieve the same individual normalized MSEs ε1, ..., εK

in the downlink. Therefore, if any individual normalized MSEs

ε1, ..., εK are achievable in the uplink with total transmission power

Pmax, then ε1, ..., εK are also achievable in the downlink under the

same power constraint.

Conversely, it can be shown by the same reasoning, that each

point from the downlink region is achievable in the uplink. �

3. OPTIMIZATION STRATEGIES

An immediate consequence of Theorem 1 is that the optimization

problems P1 (3) and P2 (4) can be solved by optimizing the mean

square errors of the equivalent uplink system described in Sec-

tion 2.1. The optimum equals the optimum of the original downlink

problem. Moreover, the optimizer always has the familiar structure

(9), which minimizes the uplink MSE for a given power allocation.

Thus, a general framework for joint MSE transmitter design is as

follows:

1. formulate the equivalent uplink problem and jointly opti-

mize U , p, and β subject to a total power constraint.

2. compute associated SINR values γi = SINRi(ui, p), ∀i.

3. compute the downlink power allocation which fulfills the

targets obtained by step 2:

q = σ2
n

(
D−1(γ1, . . . , γK) − Ψ(U)

)−1
1K .

This power allocation together with U and β achieves the optimal

downlink MSE according to the respective problem formulation.

Having derived this duality framework, we are now able to propose

algorithmic solutions for the problems P1 and P2.

3.1. P1: Best Overall Efficiency

Let us first consider the problem P1 in the uplink. We begin with

a fixed power allocation P . In this case, the minimum individual

normalized MSEs and the maximum SINRs are achieved simulta-

neously by the MMSE beamformers (9). The minimum MSE is

related to the maximum SINR (see e.g. [1] ) as follows

εUL,min
i =

1

1 + SINRUL,max
i

, i = 1, ..., K. (16)

The normalized MSE can be further minimized if we apply

power control. Since the normalized MSE can be expressed as

NMSEUL = E{‖d̂ − d‖2} =
K∑

i=1

εUL
i

= K − M + σ2
nTr([HPH∗ + σ2

nI]−1) , (17)

the optimization problem P1 can be reformulated as

min
p1,...,pK

Tr([HPH∗ + σ2
nI]−1)

s.t.
K∑

i=1

pi = Pmax, and pi ≥ 0, 1 ≤ i ≤ K . (18)

This problem is convex with respect to the power allocation. So it

can be easily solved by interior point methods. Assume the optimal

power allocation is P opt, then the optimal MMSE filter is

Ũ
opt

mmse = (HP optH∗ + σ2
nI)−1HP opt = Uopt

mmseβ
opt
mmse.

Note that the scaling matrix βopt
mmse plays an important role in

minimizing the individual normalized MSE.

3.2. P2: Fairness

Problem P2 was studied for the more general MIMO case in [2].

It was shown that the optimum is characterized by equal MSE and

the power constraint is fulfilled with equality. For each power al-

location, the filter Ũ has the optimal structure (9), in which case

the MSE is given by (16) as a function of the transmit powers.

Thus, balancing the MSE is equivalent to balancing the quantities

SINRUL,max
i , ∀i. An algorithmic solution of this problem was re-

cently proposed in [9]. The algorithm converges monotonically to

the global optimum. Each iteration consists of the following steps:

1. for given p update the filters with (9).

2. for given U , compute the new powers p by eigendecompo-

sition[
DΨT (U) D1Kσ2

n
1

Pmax
1T

K DΨT (U) 1
Pmax

1T
K D1Kσ2

n

] [
p
1

]
= λmax

[
p
1

]
Having found the optimal uplink power allocation pbal and the as-

sociated filter Ũ
bal

mmse, we can proceed with the steps 2 and 3 listed

at the beginning of Section 3.

3.3. Simulation Results

We illustrate the solutions of P1 and P2 and compare our strategies

with the TxWF [8]. Consider the following channel realization

H =

⎡⎢⎣
−0.0420 0.0994 0.3254 −1.7313
0.3240 −0.1164 −0.0952 0.4788
0.5065 0.6892 0.0312 −0.4478
−1.0286 1.8833 −0.6138 0.3868

⎤⎥⎦ . (19)
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In the simulation, independent unity-energy data streams and same

total transmission powers are assumed for different schemes. Fig. 3

shows the normalized MSE versus the total transmission power

over noise variance. The line with circles denotes the total nor-

malized MSE for P1, which is the minimum that can be achieved in

both uplink and downlink for the given channel realization (19) and

total transmission powers. It can be seen that there is a transition

between 12dB and 14dB. Before the transition, user 3 is switched

off due to the bad channel quality, and after that, the total trans-

mission power is high enough to support all users. We can see that

the normalized MSEs for P2 and TxWF are larger. For fairness of

comparison with TxWF, user 3 is also switched off for low powers,

which is denoted by TxWF2.

However, the optimal power allocation which minimizes the

normalized MSE in most cases is unfair for the users who experi-

ence bad channels. This can be observed in Fig. 4. At Pmax/σ2
n =

10dB, user 3 is switched off, and at Pmax/σ2
n = 20dB, user 3

suffers a larger normalized MSE compared with other users, espe-

cially with user 2. In the MSE balancing case, all users have the

same individual normalized MSE. For TxWF, the individual nor-

malized MSEs are neither balanced nor is the sum minimized.

4. CONCLUSIONS

We have studied the problem of MSE transmit optimization for a

multi-antenna transmitter and several independent single-antenna

receivers under a sum power constraint. This model also holds for

multi-user MIMO with fixed receivers. One main result of the pa-

per is to show that the achievable region in terms of normalized lin-

ear MSE is the same as the region of an equivalent uplink problem,

which is obtained by switching the role of transmitter and receivers.

Thereby, the optimal transmit strategy can be found indirectly, by

solving an equivalent problem. Many MSE optimization strategies,

which are known for joint reception, can be transferred to the joint

transmit problem. This is a big advantage since the downlink is

difficult to handle directly. Examples are the min-max-MSE and

sum-MSE optimization problems, for which we have provided al-

gorithmic solutions in Section 3.

This “duality” between the normalized MSE regions extends

previous results [9, 12, 13], where a similar relationship was found

in the context of SINR optimization. The close relationship be-

tween the maximum SINR and the minimum MSE is well known

for the uplink. An interesting consequence of the results in this

paper is that a similar link exists between the downlink quantities.

This is an immediate consequence of both duality relationships.

Other forms of duality have already been observed, e.g. in the
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context of information theoretic capacity [11]. An interesting topic

for future work will be to prove whether or not a similar duality

holds for other scenarios, e.g. the capacity of MIMO multiuser

systems with linear processing.
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