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ABSTRACT

This paper describes a low-rate feedback algorithm for conveying
partial channel state information—specifically, the dominant row
subspace of the channel matrix—from the receiver to the trans-
mitter in a continuously time-varying multiple-antenna environ-
ment. Since subspaces are points on a complex Grassmann man-
ifold, variations in subspaces are treated as a piecewise geodesic
process on the manifold. The receiver feeds back one bit to indi-
cate the preferred sign of a random velocity matrix of the geodesic.
Numerical results show that the performance of the proposed algo-
rithm is better than the Grassmannian subspace packing approach
at low-to-medium Doppler frequency and always better than the
previously proposed gradient sign feedback scheme.

1. INTRODUCTION

It is well known that multiple-input multiple-output (MIMO) sys-
tems provide capacity enhancement over single-antenna systems.
Space-time coding is designed to approach the channel capacity of
MIMO systems [1, and references therein]. Most work on space-
time coding deals with the “blind” case, where no knowledge of
the forward channel is available to the transmitter.

In a MIMO system, if the transmitter has perfect knowledge
of the underlying channel state information (CSI), a higher chan-
nel capacity is achievable compared to blind transmission through
power allocation to the right singular subspace of the channel ma-
trix. When the reciprocity of wireless channels does not hold, such
as in frequency-division duplex, perfect CSI at the transmitter re-
quires a high-rate feedback channel, which may not be practical,
particularly in fast time-varying environments. Thus, the identifi-
cation and utilization of partial CSI at the transmitter are important
issues.

The benefits of partial CSI at the transmitter and the design of
optimal transmission schemes with partial CSI are shown in [2].
Techniques proposed for attaining partial CSI include subspace
quantization using Grassmannian subspace packing [3] and sub-
space tracking through a gradient sign feedback [4]. The efforts of
attaining and utilizing partial CSI at the transmitter have also been
extended to frequency-selective channels [5, 6]. However, we will
focus on flat-fading channels in this paper.

In [4], each unit of feedback is a single bit indicating the pre-
ferred sign of a random perturbation of the current transmit weight
subspace, while each codeword in [3] has to be encoded into sev-
eral bits. Therefore, with a very low-rate feedback channel re-
ceivers in [3] usually need channel prediction, and it is the pre-
dicted channel that is quantized. The complexity of the quantiza-

tion algorithm in [3] is also considerable when the codebook size
is large.

Here, a new partial CSI acquisition algorithm is proposed.
We consider the transmit subspaces as points in a complex Grass-
mann manifold. Variations in subspaces are treated as a piecewise
geodesic process in the Grassmann manifold. A one-bit feedback
is utilized to indicate the preferred sign of a random velocity ma-
trix of the geodesic.

The problem setting and an introduction of the geometry of
Grassmann manifolds are given in Sections 2 and 3, respectively.
The algorithm is demonstrated in Section 4. Section 5 provides
an analysis of algorithm convergence. Numerical examples are
shown in Section 6, and Section 7 concludes the paper.

Notation: Bold upper (lower) letters denote matrices (column
vectors); (·)H denotes Hermitian transpose; ‖ · ‖F stands for the
Frobenius norm of a matrix; E{·} stands for expectation; tr{·}
is the trace of a matrix; �{·} stands for the real part of complex
entries, sign(·) for the signum function; (In) I denotes an (n×n)
identity matrix; 0m×n is an m×n all-zero matrix; diag(x) stands
for a diagonal matrix with x on its diagonal; C

n denotes the n-
dimensional complex space. The notation CN (µ, σ2) denotes the
complex Gaussian distribution with mean µ and variance σ2.

2. PROBLEM SETTING

We consider a flat-fading MIMO channel with Nr receive antennas
and Nt transmit antennas, characterized by the following discrete-
time input-output relationship,

y[n] = H [n]x[n] + n[n], (1)

where H [n] is an Nr × Nt complex channel transfer matrix, and
n[n] is an Nr × 1 zero-mean complex Gaussian noise vector with
covariance matrix N0I . The singular value decomposition (SVD)
of H [n] is defined as

H [n] = U [n]Λ[n]V H [n], (2)

where Λ[n] has on its main diagonal the singular values of H [n]
in descending order. The Ns-dimensional principal right-singular
subspace of H [n] is spanned by the first Ns columns of V [n]

Ṽ [n] = V (:, 1 : Ns)[n], (3)

where we use MATLAB notation to denote a submatrix. Note that
Ṽ [n] is an orthonormal matrix, i.e., Ṽ

H
[n]Ṽ [n] = INs

. The
objective of the proposed algorithm is to track an Nt×Ns complex
weight matrix W [n] with orthonormal columns that maps an Ns×
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1 complex vector s of coded message symbols to the transmitted
signals

x[n] = W [n]s[n]. (4)

The tracking attempts to extract the principal right-singular sub-
spaces, giving

W [n]W H [n] = Ṽ [n]Ṽ
H

[n]. (5)

Such a W [n] is the orthonormal matrix that maximizes the re-
ceived power [4], defined as

J [n] = ‖H [n]W [n]‖2
F . (6)

It has been shown that perfect subspace tracking with equal power
allocation among Ns dimensions has a power gain of precisely
Nt/Ns over blind transmission [4].

Note that if Ns > Nt/2, we only need to track the orthogonal
complement of Ṽ [n]. Therefore, without loss of generality, we
assume that Ns ≤ Nt/2.

In the following section, we summarize the intrinsic properties
of Grassmann manifolds.

3. GEODESICS OF GRASSMANN MANIFOLDS

In this section we summarize some properties of the geometry of
Grassmann manifolds used in this paper [7]. A complex Grass-
mann manifold GNt,Ns

contains all Ns-dimensional subspaces of
C

Nt . As mentioned previously, since the transmit beamforming
matrix can be any orthonormal Nt × Ns matrix that forms an
orthonormal basis of the principal right singular subspace of the
MIMO channel, the Grassmann manifold is a natural description
of the domain of the transmit beamforming matrices.

We introduce all necessary notations using time instant 0 as an
example. The Nt×Ns orthonormal transmit weight matrix at time
0 is W [0]. Denoted as [W [0]], a point in the Grassmann manifold
is an equivalent class

[W [0]] = {W [0]QNs
: QNs

is any Ns × Ns unitary matrix},
(7)

i.e., a point in the Grassmann manifold is the set of all Nt×Ns or-
thonormal matrices whose columns span the same subspace as the
columns of W [0]. When performing computations on the Grass-
mann manifold, we use the matrix W [0] to represent the entire
equivalence class. Let Q[0] = ( W [0] Z [0] ), where Z [0]
contains as columns an orthonormal basis of the orthogonal com-
plement of [W [0]]. In other words, Q[0] is a unitary matrix.

A geodesic is the curve of shortest length between two points
on a manifold. We will represent a stochastic process on GNt,Ns

as a piecewise-geodesic curve with random velocities at individual
pieces. Therefore, we need an explicit description of geodesics in
GNt,Ns

. Geodesics in GNt,Ns
starting from W [0] are parameter-

ized by [7]
W (t) = Q[0] exp(tB[0])J , (8)

where

J =

„
INs

0(Nt−Ns)×Ns

«
(9)

and is fixed throughout this paper. The matrix B[0] is further re-
stricted to be of the form

B[0] =

„
0 −AH [0]

A[0] 0

«
, A[0] ∈ C

(Nt−Ns)×Ns . (10)

We denote the point reached by the geodesic at time t = 1 as
W [1], therefore W [1] = W (1) = Q[0] exp(B[0])J . The ma-
trix A[0] determines the point W [1] uniquely given W [0]. A[0]
can be deemed as the velocity that takes W [0] to W [1] in unit
time. In the MIMO transmit subspace tracking context, [W [0]] is
the outdated knowledge of the transmit subspace at the transmitter,
and [W [1]] is the current transmit subspace which we want to be

as close to
h
Ṽ [1]

i
as possible. The essence of the proposed algo-

rithm is to approximate A[0] using a random matrix together with
a one-bit sign obtained from feedback.

We now summarize how to efficiently compute W [1] given
W [0] and A[0], without performing matrix exponentials [8]. Let

A[0] = Ũ 2ΘU
H
1 (11)

be the compact SVD of A[0], where

Θ = diag( θ1 θ2 . . . θNs
). (12)

The θk’s, k = 1, 2, . . . , Ns, are principal angles between the sub-
spaces [W [0]] and [W [1]]. Then it can be shown that

W [1] = Q[0]

„
U 1C

Ũ 2S

«
, (13)

where C is a diagonal matrix with elements cos θk, 1 ≤ k ≤ Ns,
on the diagonal, and S is diagonal with elements sin θk. The com-
putational complexity is O(NtN

2
s ), far below the O(N3

t ) implied
by the expression exp(B[0]).

4. ALGORITHM DESCRIPTION

Before elaboration of the algorithm, we list our assumptions. In
this paper, we assume that the time variation process is indepen-
dent and identically distributed (i.i.d.) on each entry of the channel
matrix H [n]. From symmetry, we conjecture that entries of A[n]
are i.i.d. CN (0, a2), where a is a parameter depending on the
Doppler frequency.

We assume that channel estimation at the receiver, feedback,
and computation of the transmit weight matrix at the transmitter do
not consume time and happen instantly. Similarly, for the Grass-
mannian subspace packing scheme with a codebook of size 2N ,
we assume that the channel at time n + N − 1 is predicted by
the receiver at time n, and the N-bit codeword is fed back at times
n, n + 1, . . . , n + N − 1. The dequantized beamforming ma-
trix for time n − 1 is held constant at the transmitter for times
n − 1, n, . . . , n + N − 2.

For each feedback period, the random velocity A[n] is gener-
ated with i.i.d. CN (0, a2) entries. We assume that the transmitter
and the receiver have common knowledge of the value of A[n] at
any time instant. A[n] can be conveyed from the transmitter to
the receiver multiplexed with data symbols [4], or synchronously
generated by pseudo random number generators at the transmitter
and the receiver.

The feedback decision selects which sign-direction is prefer-
able in terms of maximizing received power, as the result of an
advancement along the geodesic. The received power at discrete
time n is captured by the cost function J [n] in (6). For each in-
stance of the random matrix A[n], we approximate the new trans-
mit subspace as one point in the Grassmann manifold reached by
a geodesic in unit time, starting from the current transmit sub-
space, using A[n] as the velocity matrix. Using the parameterized
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Table 1. Tracking algorithm summary

Initialize:

W [0] =

„
INs

0

«
(TX & RX)

for n = 0 : ∞
A[n]=realization of Gaussian (TX & RX)
Form unitary matrix Q[n] = [W [n] Z [n]] (TX & RX)
Compute s[n] using (14) (RX)
W [n + 1] = Q[n] exp(s[n]B[n])J (TX & RX)

geodesic in (8), with one bit of ambiguity, the new transmit sub-
space W [n+1] can take either value of Q[n] exp(±B[n])J . The
binary feedback s is determined as

s[n] = sign(‖H [n + 1]Q[n] exp(B[n])J‖2
F

−‖H [n + 1]Q[n] exp(−B[n])J‖2
F ).

(14)

The weight matrix update at the transmitter is given by W [n +
1] = Q[n] exp(s[n]B[n])J . Since W [n + 1] ∈ GNt,Ns

, W [n +
1] serves as the new orthonormal transmit matrix directly and no
further orthonormalization is necessary, as opposed to the algo-
rithm in [4], where a Gram-Schmidt QR factorization is required.
The tracking algorithm is summarized in Table 1.

The parameter a controls the length of the geodesic arc. To
see this, first introduce a matrix Aw[0] with i.i.d. CN (0, 1) en-
tries such that A[0] = aAw[0], for a > 0. The arc length distance
between W [0] and W [1] is defined as [7] d(W [0], W [1]) =“PNs

i=1 θ2
i

”1/2

, where the θi’s are defined in (12). Using (11),

it can be shown that d(W [0], W [1]) = ‖A[0]‖F = a‖Aw[0]‖F ,
i.e., the parameter a is proportional to the average arc length of
the geodesic. Intuitively, the arc length of the geodesic traversed
in unit time for high Doppler frequencies is larger than for low
Doppler frequencies. Therefore, the parameter a should be chosen
monotonically with Doppler frequency.

5. GRADIENT EXTRACTION

In this section, we analyze the convergence behavior assuming that
H is static and non-random. We first simplify the expression of s
in (14). When the channel is slowly varying, the norm of A[0] is
small. Equivalently, the values of the θks are small. In this case, a
first-order approximation gives C ≈ I and S ≈ Θ. Using (10),
(11), (13), and the above approximation, we have

s[0] ≈ sign tr�(W H [0]HH [0]H [0]Z [0]A[0]). (15)

Differentiation of W (t) in (8) gives the direction of the ran-
dom geodesic with one-bit feedback

Ẇ (0) = Ẇ (t)|t=0 = s[0]Q[0]B[0]J = s[0]Z [0]A[0]. (16)

The expectation of this direction is E{Ẇ (0)}=Z [0]E{s[0]A[0]}.
With (15) and the results of [4, Appendix A], we have

E{Ẇ (0)} = a

r
1

π

Z [0]ZH [0]HH [0]H [0]W [0]

‖ZH [0]HH [0]H [0]W [0]‖F

. (17)

At the point W [0], the gradient of the cost function J defined on
the Grassmann manifold is given by [7]

2Z [0]ZH [0]HH [0]H [0]W [0]. (18)

Comparing with (17), we see immediately that the expected di-
rection of the geodesic is proportional to the gradient. Among all
tangential directions, this gradient points in the direction of maxi-
mum increase of the cost function. In contrast, the expected direc-
tion of subspace updating in [4] is proportional to the gradient in
the Euclidean sense.

To consider the estimation error, we define the error matrix
E = Ẇ (0) − E{Ẇ (0)}. One measurement of the estimation
error is related to the second moment of the error matrix through

tr(E{EH
E}) = a2 ((Nt − Ns)Ns − 1/π) . (19)

While in [4], the estimation error embodied by a similarly defined
error matrix E [4, Eq. (60)] is given by

tr(E{EH
E}) = 2β2 (NtNs − 1/π) , (20)

where β is an adaptation parameter controlling the step size. Ig-
noring the parameters a, β and the constant two coming from the
different variance of the entries of random matrices, it can be seen
that the estimation error of our algorithm is smaller. This advan-
tage arises because the number of degrees of freedom of A[n] is
only (Nt − Ns)Ns, which is less than NtNs, the dimension of
random perturbation in [4].

6. NUMERICAL RESULTS

A Monte Carlo simulation was performed to test the performance
of the proposed transmit subspace tracking algorithm in the set-
ting of Ns = Nr = 2 and Nt = 8. The receiver channel es-
timation error was modeled as AWGN added to the true channel
matrix. The channel estimation error was 20 dB below the chan-
nel power. The feedback channel was free of error. The channel
model was independent Rayleigh flat fading with time correlation
generated by Jakes’ method. The relationship between the Doppler
frequency FD and the feedback rate FFB was captured by the ra-
tio FFB/FD . All the numerical results were compared with the
feedback schemes in [3, 4]. For [3], the size of the Grassmannian
subspace packing codebook was 2N = 1024, and the receiver uti-
lized a linear predictor of length 26 or 50 to predict the channel
matrix H nine intervals ahead. Optimal values of a and β [4] ver-
sus Doppler frequency were determined through numerical search
to minimize the mean estimation error. In the figure legends, ideal
denotes ideal subspace tracking, geodesic denotes our algorithm,
gradient sign stands for [4], Grassmann 26 (50) stands for [3] with
linear predictor length 26 (50), and blind stands for blind transmis-
sion.

The average performance of tracking constant channels is il-
lustrated in Fig. 1. The result is in dB relative to the cost of ideal
subspace tracking. As can be seen, larger values of a and β re-
sulted in faster convergence but larger stable-state error. Our al-
gorithm showed faster convergence and smaller stable-state error
than the gradient sign algorithm.

The ergodic capacities achieved by different algorithms are
given in Fig. 2 for FFB/FD = 1000. Our algorithm shows a
2-3 dB gain over the gradient sign algorithm across the medium-
to-high SNR range. For this given value of FFB/FD , both our
algorithm and the gradient sign feedback outperform the Grass-
mannian subspace packing algorithm.

Finally, we compare the tracking performance in terms of cost
function J . The feedback rate FFB is fixed at 6000 Hz, and the
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Doppler frequency varies from 1 Hz to 100 Hz. The result is nor-
malized to the performance of ideal subspace tracking (Jopt) and
is shown in Fig. 3. Our algorithm performs uniformly better than
the gradient sign feedback, and is better than the Grassmannian
subspace packing algorithm for FD as high as 55 Hz. When the
feedback rate is low or the Doppler frequency is high, the tracking
algorithms’ performance is limited, and the batch feedback algo-
rithm performs better.

0 100 200 300 400 500 600 700 800
−7

−6

−5

−4

−3

−2

−1

0

1

Time (feedback intervals)

J 
(d

B
)

Ideal
Geodesic a=0.01
Geodesic a=0.03
Gradient Sign β=0.01
Gradient Sign β=0.04

Fig. 1. Convergence transient of received power.

−10 −5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

SNR (dB)

C
ap

ac
ity

 (
b/

s/
H

z)

Ideal
Geodesic
Gradient Sign
Grassmann 26
Grassmann 50
Blind

Fig. 2. Ergodic capacity versus SNR at FFB/FD = 1000.

7. CONCLUSION

In the proposed transmission subspace tracking algorithm, varia-
tions in transmit weight matrix are treated as a piecewise geodesic
process in Grassmann manifolds. The expected direction of the
geodesic at the starting point is proportional to the gradient of a
cost function in the Riemannian sense. The proposed algorithm
tries to track fewer parameters than the gradient sign algorithm
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Fig. 3. Mean cost function versus Doppler frequency.

and achieves better performance. Numerical results show that the
performance of the adaptive algorithm approaches ideal subspace
tracking for feedback rates on the order of 1000 times the chan-
nel Doppler frequency. Compared with a Grassmannian subspace
packing quantization algorithm, our algorithm has better perfor-
mance at low-to-medium Doppler frequency and does not incur
the complexity of quantization and long-range channel prediction.
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