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ABSTRACT

Practical MIMO channels often exhibit structure in both space and
time, i.e. a spatio-temporal structure. The potential of exploiting
this structure in training based schemes is studied using a common
ray-based channel model that captures parts of the structure ob-
served in measurements. A lower bound, the Cramér-Rao lower
bound (CRB), on the channel estimation error and a lower bound
on the capacity are used to study the potential gain in exploit-
ing channel structure. It is found that the training based capacity
may be substantially increased since a more parsimonious channel
model with less parameters to estimate can be used. Numerical
evaluations indicate that the capacity grows with the number of
antennas similar to the case of a known channel if the structure is
exploited. If it is not exploited, the training-based capacity reaches
a maximum after which it decreases with the number of antennas.
Furthermore, the temporal structure can be used to interpolate or
predict the channel between training instants and it is found that
prediction can improve performance for training based schemes.

1. INTRODUCTION

Using multiple antennas at both the transmitter and receiver or so
called Multiple-Input Multiple-Output (MIMO) systems have been
found to greatly increase the data rate compared to single antenna
systems [1, 2]. Initially, most of the work was focused on the case
where the channel is known at the receiver but the case with no
Channel State Information (CSI) at the receiver (CSIR) has been
addressed more recently. The most common approach is to use
training symbols to obtain an estimate of the channel at the re-
ceiver and then detect the data symbols. Although not required by
Shannon theory many practical wireless communication systems
use training since it simplifies the receiver design.

Several recent publications have investigated the impact of
training on the channel capacity [3]- [10] for a Gaussian distributed
channels where each channel coefficient is considered an unknown
parameter. However, most practical channels obtained in channel
sounding experiments exhibit a structure in both time and space,
i.e. a spatio-temporal structure. The potential benefit of exploiting
this structure is investigated in this paper by using a common ray-
based channel model [11] that captures part of the spatio-temporal
structure observed in measurements. By analyzing the training-
based capacity for this channel model, the fundamental perfor-
mance gain of exploiting structure in the channel can be studied.
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For example, the training-based capacity indicates that the num-
ber of training symbols can be reduced when the spatio-temporal
structure is exploited. Furthermore, the impact of physical param-
eters such as antenna separation and number of multipaths can also
be studied using the ray-based channel model.

The training-based capacity for the structured channel model
is investigated using a lower bound on capacity that has been de-
rived in several recent publications [6, 7, 12]. This bound es-
sentially depends on the channel estimation and training scheme
through the channel estimation error covariance matrix. Since the
aim of this paper is to study the fundamental limit of exploiting
channel structure, the CRB on the estimation error is used which
is valid of any unbiased estimator. It is found that the estimation
error can be significantly reduced and the capacity increased by
exploiting the structure of the ray-based channel model. This is
mainly due to the fact that this model contains fewer unknown pa-
rameters than a direct parameterization of the channel coefficients.
Furthermore, for time varying channels, this parsimonious model
can be used to predict or interpolate the channel between training
instants. Numerical evaluations where the CRB for channel pre-
diction is inserted into the capacity lower bound indicate that the
training-based capacity in moderately fast varying channels can be
substantially increased.

2. SYSTEM MODEL

Consider a flat-fading MIMO system with Mt transmit and Mr

receive antennas. The received signal at time t can be modeled as

y(t) = H(t)s(t) + n(t), (1)

where the transmitted signal s(t) is an Mt ×1 vector and the addi-
tive noise n(t) is an Mr × 1 vector. The channel is modeled using
a ray-based narrowband MIMO channel model which several re-
cent measurement campaigns have used to describe and analyze
measured data [13, 14]. Variations of this model have also been
used in many other studies, see [11] for more details. The channel
matrix at time t, H(t), is modeled as the sum of the contributions
of L different plane waves (paths) as

H(t) =
1√
L

L∑
l=1

αlar,la
T
t,le

jωlt, (2)

where αl is the scattering coefficient of path l, ωl is the Doppler
frequency of path l at time t, ar,l is the steering vector at the re-
ceiving array associated with the lth path, and at,l is the corre-
sponding vector for the transmitter. Although the analysis in the
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following sections is valid for any antenna arrangement, a Uniform
Linear Array (ULA) will be used in the simulation section since
the steering vector, in this case, exhibits a simple Vandermonde
structure

a
T
t,l =

[
1 ejΩt,l ej2Ωt,l · · · ej(Mt−1)Ωt,l

]
, (3)

where the angular frequency of path l Ωt,l is modeled as Ωt,l =
2πdt sin φt,l where dt is the element separation distance in wave-
lengths and φt,l is the Direction Of Departure (DOD) at the trans-
mitter.

In the following analysis it is assumed that the underlying pa-
rameters such as DODs and scattering coefficients are constant for
N time instants and then change into new values. During a block
of N symbols, Nt training symbols are used for channel estima-
tion and Nd = N − Nt data symbols are transmitted. Since the
channel changes within each block but the parameters remain the
same, this channel can be viewed as an extension of the typical
block-fading channel [1, 6].

At each time instant t the transmitted symbol s(t) can be either
a data symbol sd(t) or a training symbol st(t). In the following,
the training and data parts of the transmitted and received signals
are stacked into matrices Yt, St and Yd, and Sd. No CSI at the
transmitter is assumed and a zero-mean complex normal distribu-
tion is assumed for the data part of the signal Sd of size Mt × NT

and E[SdSH
d ] = Ntσ

2
Sd

/MtISd
where ·H denotes complex conju-

gate transpose. The training part of the signal is normalized in the
same way. Furthermore, the stacked version of the additive noise
N of size MR × N is assumed to be complex normal distributed
N ∈ CN (O, σ2

N
I).

3. CAPACITY LOWER BOUND AND CRB

Obtaining the capacity of training based systems is in general un-
tractable since a complete statistical description of the channel es-
timate and transmitted and received signals is not available. How-
ever, lower bounds on the training based capacity has recently been
modified to MIMO channels [6, 7, 12] where the true channel is
divided into two parts; A known channel estimate Ĥ(t) and an un-
known random error term H̃(t). Using (1), this can be expressed
as [6, 7, 12]

Y = HS + N = ĤS + H̃S + N = ĤS + Ne, (4)

where Ne = N + H̃S denotes an effective noise term. Hence, sig-
naling over a channel with partial channel knowledge can be inter-
preted as signaling on a channel equal to the channel estimate but
with an effective noise term Ne. Assuming no CSIT and that the
power is distributed equally over antennas and time, the capacity
can be lower bounded

C ≥ Cb =
1

N

Nd∑
n=1

EĤ

[
log

∣∣∣I + Υ
−1Ĥ(tn)Ĥ

H
(tn)

∣∣∣] , (5)

where tn ∈ [1, N ], Υ = R
H̃(tn)

+ Mt/ρI, and ρ = σ2
sd

/σ2
N

denotes the SNR. In achieving the bound in (5), the receiver as-
sumes that the effective noise is Gaussian with spatial covariance
Υ and independent of the transmitted data. If the effective noise
is not Gaussian, equation (5) represents a lower bound since Gaus-
sian noise represents a worst-case noise. Since the potential per-
formance of exploiting channel structure is investigated and not
the performance of a particular estimator, the CRB that provides a

lower bound of the error covariance R
H̃

for any unbiased estimator
will be used.

The CRB is found in a manner similar to [15] for the data
model in (2) with parameters θ = [Re(α), Im(α), ω,Ωt,Ωr]
where α is defined as α = [α1, α2, . . . , αL]T and the other pa-
rameters are defined similarly. Note that the total number of real
unknowns is 5L and that the noise variance is omitted since the
estimation of the noise variance decouples from the other param-
eters. In the following it is convenient to use a vectorized version
of the channel model h̃(t) = vec

[
H̃(t)

]
. Using a vector formula-

tion of the CRB for functions of parameters, the MtMr × MtMr

covariance matrix of the estimation error can be lower bounded as

R
h̃(tt)

= E
[
h̃(tt)h̃

H
(tt)

]
= E

[
H′(tt)BH′

H

(tt)
]
, (6)

where H′ is a MtMr × 5L Jacobian matrix and B is the CRB of
the parameters θ which is given in the Appendix. The expression
for the covariance of the estimation error is now obtained as

R
H̃(tt)

= E
[
H̃(tt)H̃

H
(tt)

]
=

Mt∑
k=1

EkR
h̃(tt)

EH
k , (7)

where the selection matrix Ek is defined as a Mr × MtMr ma-
trix of zeros except for the kth block containing a unit matrix, i.e.
[Ek]1:Mr,(k−1)Mt+1:kMt

= I
Mr

using Matlab notation. Finding
an analytic expression for (6)-(7) is in general difficult. A numer-
ical Monte-Carlo approach will therefore be used to obtain initial
channel capacity results.

The expression in (7) captures the error when training sym-
bols are used to estimate the model in (2) which then is evalu-
ated for the data transmission times. On the other hand, if no at-
tempt is done to interpolate or predict the channel between train-
ing symbols, the channel estimate will become outdated before the
next training segment. In that case, a second error term Rout =

E
[
(H(t) − H(tt)) (H(t) − H(tt))

H
]

that accounts for the aging

of the channel estimate appears in (7) .

4. NUMERICAL RESULTS

In this section, the capacity lower bound (5) will be evaluated by
calculating the CRB lower bound and the channel estimate Ĥ. In
evaluating the CRB, the scattering parameters α are assumed to
be complex Gaussian distributed α ∈ CN (0, IL). The Doppler
frequencies ωl are defined as ωl = 2πfd sin φl where fd is the
Doppler frequency normalized by the symbol rate. A uniform
distribution for the angle between the propagation path and the
direction of travel φl ∈ U [0, 2π) will be used although any an-
gular distribution could be used in the analysis. The DOD and
DOA are defined as Ωt,l = 2πdt sin φt,l and Ωr,l = 2πdr sin φr,l

where the angles are assumed to be distributed according to a uni-
form φt,l, φr,l ∈ U [0, 2π) distribution. Of course, other angu-
lar densities can also be explored but only these distributions will
be studied here to reduce the number of scenario parameters. To
avoid potentially unidentifiable scenarios, the parameter realiza-
tions with DOAs, DODs, or Doppler frequencies that essentially
overlap are removed. This corresponds to a practical situation
where two closely located clusters of scatterers can be combined
into one [15]. For the above parameter distributions, the outdated
error term becomes Rout = 2Mt (1 − J0(2πfd(t − tt))) M(dr)
where M(dr) is defined as [M(dr)]i,j = J0(2πdr(i − j)) and
J0(x) denotes the zeroth order Bessel function of the first kind. In
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Fig. 1. Capacity lower bound as a function of the number of trans-
mit antennas Mt with ρ = 20dB, Mr = 12, fd = 0.001, and
L = 10.
the following simulations dt = dr = 5λ, and an SNR of 20dB is
assumed.

In order to evaluate (5), the value of the channel estimate Ĥ is
also needed but only a lower bound on the variance of the channel
estimation error is available. For the case of interest where train-
ing is a suitable choice, the channel estimation error is substan-
tially smaller than the channel itself and it is assumed that Ĥ ≈ H.
Hence, additional effects on the effective SNR through the vari-
ance of the channel estimate are neglected [5]. Note that calculat-
ing the variance of the channel estimate requires that the statistical
properties of the particular channel estimator are known. Although
not reported here, simulations were performed for estimators with
different statistical properties and the results showed similar qual-
itative behavior to those detailed below.

The benefit of exploiting channel structure is first studied in
Figure 1 where the capacity lower bound (5) is plotted versus the
number of transmit antennas Mt when the number of receive an-
tennas is held fixed Mr = 12. A sub-block length of 15 symbols
is used of which three symbols are used for training. Although
shorter than a typical sub-block, it illustrates the general behavior
of the system as a function of Mt. However, it is also assumed
that the underlying parameters are the same for four sub-blocks
so that previous training symbols can be used to improve perfor-
mance. The results shown in Figure 1 represents the average for
100 blocks with a normalized Doppler frequency fd = 0.001 and
L = 10. For comparison, the performance of the LMMSE esti-
mator in an i.i.d. Gaussian channel [6] and the capacity in that
case with CSIR is also shown. Note that only the behavior is com-
pared and not the actual values since the capacity lower bounds are
obtained under different assumptions. For instance, the maximum
rank of the structured channel matrix is min(L, Mt, Mr) so the ca-
pacity reaches a treshold at ten transmit antennas in this case. On
the other hand, the i.i.d. channel, to which the LMMSE is applied,
keeps growing with the number of transmit antennas.

For the structured channel, it is clear that the capacity grows
with the number of transmit antennas in a manner similar to the
case with CSIR. This is due to the fact that the number of un-
known parameters does not grow with the number of transmit an-
tennas unlike the case of an unstructured model where the number
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Fig. 2. Capacity lower bound as a function of the normalized
Doppler frequency fd with ρ = 20dB, Mt = 6, Mr = 12, and
L = 13.

of parameters is MtMr . The number of training symbols used in
the LMMSE simulation is Mt since that was found to be optimal
(in LMMSE training-based capacity sense) in [6]. The number
of transmit antennas that maximizes the capacity lower bound for
the structured channel therefore differs from that obtained in the
analysis of [6]. For a structured channel, higher capacities can be
obtained by adding more transmit antennas if there is enough mul-
tipath and receive antennas. Since most practical channels do ex-
hibit some structure, the analysis of the capacity lower bound indi-
cates that training may still be a possible solution for systems with
many antennas or rapidly varying channels if the channel structure
can be exploited.

The impact of temporal structure is examined in Figure 2 where
the capacity bound is evaluated versus normalized Doppler fre-
quency. In this case, there are three sub-blocks each one hundred
symbols long with three training symbols. It is clear that apply-
ing channel prediction can substantially improve the performance
compared to traditional training. In principle, the second term
in the error covariance that accounts for the aging of the chan-
nel estimate Rout dominates the no-prediction capacity for higher
Doppler frequencies. It is important to note that the plot repre-
sents a fundamental upper limit of using channel prediction since
the CRB is used to bound the variance and there is no modeling
error. However, the results do indicate that significant gains can be
achieved using channel prediction at moderately fast varying chan-
nels where training might be considered. Significant gains have al-
ready been observed for unstructured channel prediction and track-
ing schemes [16, 17]. Investigating MIMO channel prediction and
tracking schemes that exploit channel structure is therefore inter-
esting since training and channel state information is more impor-
tant in MIMO than SISO systems.

5. CONCLUSIONS

Several recent publications have investigated the impact of train-
ing on the capacity using a lower bound on the capacity where
each channel coefficient is an unknown parameter. In practice
the MIMO channel will exhibit a spatio-temporal structure and
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the gain of exploiting this structure was studied in this paper. A
common ray-based channel model that captures parts of this struc-
ture and a lower bound (CRB) on the channel estimation error was
used to study the potential gain of exploiting channel structure.
The ray-based channel model also allows for studies of the impact
of physical parameters such as antenna separation and the number
of multipaths. It was found that significantly better performance
can be obtained by exploiting channel structure since a more par-
simonious channel model with less parameters to estimate can be
used. Numerical evaluations indicated that the capacity grows with
the number of antennas similar to the case of a known channel if
the structure is exploited. This is different from earlier analysis
of unstructured channels [6] where it was found that the training-
based capacity reaches a maximum after which it decreases with
the number of antennas.

Furthermore, the temporal structure can be used to interpo-
late or predict the channel between training instants. Numerical
evaluations of the capacity lower bound indicated that prediction
can improve performance for training based schemes for moder-
ately fast varying channels. Future work includes analysis of the
number and placement of the training symbols to maximize capac-
ity and other ways of including channel information or constraints
that might lower the CRB [18].

APPENDIX A.

For the data model given in Section 2, the received signal y(t)
at training instants is a Gaussian distributed random variable with
mean µn = µ(tn) =

(
sT
t (tn) ⊗ IMr

)
h(tn) and covariance C =

C(tn) = σnI. Assuming that the noise at different times is inde-
pendent, the CRB for the parameters θ becomes Rθ ≥ Bθ = J−1,
where the Fisher information matrix is

[Jd]
p,q

=

Nt∑
n=1

2Re

(
∂µH

n

∂θp

C−1 ∂µn

∂θq

)
. (A.1)

Since ∂µn/∂θp =
(
sT
t (tn) ⊗ IMr

)
∂h(tn)/∂θp, all that is needed

to evaluate the CRB bound in (A.1) is to differentiate the channel.
Straightforward calculations give

∂h(t)/∂Im[αk] = j∂h(t)/∂Re[αk] = jejωkt
at,k ⊗ ar,k/

√
L

∂h(t)/∂ωk = jtαkejωkt
at,k ⊗ ar,k/

√
L

∂h(t)/∂Ωt,k = αkejωkt
dt,k ⊗ ar,k/

√
L (A.2)

∂h(t)/∂Ωr,k = αkejωkt
at,k ⊗ dr,k/

√
L,

where dt,k = ∂at,k/∂Ωt,k and dr,k is defined similarly. Al-
though the derivation is valid for any antenna arrangement, only
ULAs will be simulated in order to reduce the number of scenario
parameters.
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