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ABSTRACT

The ergodic capacity of Ricean MIMO (multiple-input
multiple-output) fading channels is investigated in this pa-
per, based on a virtual (Fourier) channel representation. Co-
herent reception is assumed at the receiver. The Ricean
statistics are due to a line-of-sight (LOS) path joining the
transmitter and receiver. In the virtual domain, this LOS
path corresponds to a single entry in the virtual channel ma-
trix. The optimal input distribution of the correlated Ricean
MIMO channel in the virtual domain has a diagonal co-
variance matrix structure, the same as in Rayleigh fading
MIMO case. Our method is used to get a tight lower bound
and upper bound on the ergodic capacity. Further, the same
analysis is used to obtain an approximate optimal input dis-
tribution analytically, in place of the usual Monte Carlo based
numerical optimization methods.

1. INTRODUCTION

The use of multiple antennas can increase the capacity of
wireless channels tremendously [1]. Most analyses of such
multiple-input multiple-output (MIMO) channel capacities
have been focussed on the Rayleigh fading MIMO case,
and fewer results are available for Ricean MIMO channels.
The Ricean statistics are due to a line-of-sight (LOS) path
joining the transmitter and receiver. Since LOS paths fre-
quently exist in practical channels, it is important to charac-
terize their capacity as a function of the LOS path’s relative
strength and to investigate the optimal transmit covariance
matrix.

The ergodic and outage capacity of Ricean MIMO chan-
nels can be investigated in two ways: (i) by simulations or
measurements, and (ii) by analyses. Early investigations of
the Ricean MIMO capacity were largely based on simula-
tions and measurements (see, e.g., [2], [3]), where it was
observed that the Ricean MIMO channel capacity can be
reduced by nearly 50 percent when the Ricean factor K
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reached about 10 dB. Recently, results based on analyses
have started to appear (see, e.g. [4], [5]). In [4] and [5],
the optimal input covariance matrix was found for a Ricean
MIMO channel, or a MIMO channel with mean feedback.

In this paper, we investigate the Ricean MIMO chan-
nel capacity using a virtual channel representation [6]. The
LOS path component is transformed into a single entry in
the virtual channel matrix. The capacity achieving input co-
variance matrix is found to have a diagonal structure in the
virtual domain, the same as for the Rayleigh MIMO channel
[7]. Although the optimal power distribution among the di-
agonal entries can be calculated by numerical methods [7],
we use the diagonal structure to get upper and lower bounds
analytically, and use the analysis to obtain an approximation
to the optimal input power distribution.

2. CHANNEL MODEL AND VIRTUAL CHANNEL
REPRESENTATION

We consider a flat-fading MIMO system with nt transmit
and nr receive antennas. In complex base band, the received
signals at the nr receive antennas are organized into a vector
y as follows, which corresponds to one symbol interval:

y =
√

SNR
nt

Hx + w (1)

where x is the nt-dimensional transmit vector, H is the
nr × nt channel matrix, and w ∼ CN (0, I) is the com-
plex additive white Gaussian noise vector. We constrain the
average input power via E

[
x†x

] ≤ nt. The channel is nor-
malized so that SNR represents the average signal-to-noise
ratio at each receive antenna.

For the Ricean MIMO channel modelling, we constrain
the total channel power to be fixed, so that the per receive
antenna SNR is unchanged. This can be done through lin-
ear combination of a LOS channel matrix Hs and a diffuse
channel matrix Hd as:

H =
√

rHs +
√

1 − rHd (2)

where r ∈ [0, 1] is the fraction of power in the LOS path.
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The virtual channel representation [6] is a powerful chan-
nel model that links the physical scattering environments to
the statistical properties of channel. Both the transmitter
and the receiver are assumed to be equipped with a uniform
linear array (ULA) of antennas. The array steering and re-
sponse vectors can be expressed as

at(θt) = 1√
nt

[
1, e−j2π(θt−0.5), . . . , e−j2π(nt−1)(θt−0.5)

]�
ar(θr) = 1√

nr

[
1, e−j2π(θr−0.5), . . . , e−j2π(nr−1)(θr−0.5)

]�
The variable θ is the delay of the signal transmited/received

at two adjacent array elements from physical propagation

angle φ: θ =
[

d sin(φ)
λ

]
mod[0,1]

, where d is the spacing be-

tween transmit or receive antenna array elements, λ is signal
wavelength. We define θ as the virtual angle.

In the actual array such as a ULA with n elements and
critical antenna spacing, its spatial resolution in the virtual
angle θ is limited to 1/n. Thus the channel matrix can be
expressed as:

H = Ar H̃A†
t (3)

where the matrices At (nt × nt) and Ar (nr × nr) are the
steering and response matrices corresponding to fixed vir-
tual transmit and receive angles θt,� = (� − 0.5)/nt for
� = 1, . . . , nt and θr,k = (k − 0.5)/nr for k = 1, . . . , nr:

At = [at(θt,1), at(θt,2), . . . , at(θt,nt
)] (4)

Ar = [ar(θr,1), ar(θr,2), . . . , ar(θr,nr )] (5)

H̃ is referred to as the virtual representation of the ac-
tual channel matrix H . It corresponds to transmitting and
receiving at fixed spatial angles. Furthermore this virtual
representation can be interpreted as a 2-D spatial Fourier
transform of the physical channel, since both At and Ar are
unitary discrete Fourier transform matrices.

For the diffuse channel component, it can be reasonably
assumed that the physical scatters are uncorrelated. Under
this assumption, the virtual channel coefficients H̃k,� are
approximately uncorrelated as well [7]:

E[H̃k,�H̃
∗
k′,�′ ] ≈ Vk,� δk−k′ δ�−�′ (6)

where δn denotes the Kronecker delta function and V is an
nr×nt matrix that contains the variances of the components
of the virtual channel matrix H̃ , Vk,� = E[|H̃k,�|2].

3. CAPACITY ACHIEVING INPUT DISTRIBUTION

The LOS channel matrix can be expressed as:

Hs = ar(θr,LOS)a†
t(θt,LOS)ejϕ (7)

where θr,LOS and θt,LOS are the virtual transmit and re-
ceive angles of the LOS path, and ϕ ∈ [0, 2π) is the random
phase of the channel response.

The sum of LOS component plus diffuse components is
usually modelled as a non zero-mean Gaussian random vari-
able. This model is based on the condition that the phase

of the LOS path changes slowly, so that its phase can be
tracked at the receiver. The LOS component is then deter-
ministic and the non-zero mean model follows.

If the Ricean path is not from line of sight, but from
reflection from some dominant scatter, its phase may not be
trackable. Since the phase ϕ is random, the sum of Ricean
component plus diffuse components can be modelled as a
zero-mean but non-Gaussian random variable.

Based on (3), we can rewrite the input-output relation-
ship (1) equivalently in the virtual domain as

ỹ =
√

SNR
nt

H̃x̃ + w̃ (8)

where ỹ = A†
ry, x̃ = A†

tx, and w̃ = A†
rw. Due to the

unitarity of At, the input power constraint in the virtual do-

main is unchanged, i.e., E
[
x̃†x̃

]
≤ nt. The virtual domain

channel matrix H̃ is obtained similarly as:

H̃ =
√

rH̃s +
√

1 − rH̃d (9)

Without loss of generality, θr,LOS and θt,LOS , can be as-
sumed to correspond to the first fixed virtual angles θr,1 and
θt,1. Thus, H̃s has only a single non-zero entry ntnre

jϕ at
the (1, 1)-th position, and zeros elsewhere. The diffuse vir-
tual channel matrix H̃d has independent but not necessarily
identically distributed entries.

We make the reasonable assumption that the channel
changes in a stationary ergodic manner from symbol to sym-
bol, and also the receiver has complete channel state infor-
mation (CSI). According to Lemma 2 of [1], the channel
capacity is achieved by zero-mean proper (circularly sym-
metric) complex Gaussian input vector x ∼ CN (0, Q):

C = maxQ E[log det(I + SNR
nt

HQH†)] (10)

where Q is subjected to the power constraint: Tr(Q) ≤ nt.
This capacity formula can be equivalently expressed in the
virtual domain as

C = maxQ̃ E[log det(I + SNR
nt

H̃Q̃H̃
†
)] (11)

where Q̃ is the transmit signal covariance matrix in the vir-
tual domain, with the same power constraint Tr(Q̃) ≤ nt.
Q̃ is related to the physical domain covariance matrix Q by
Q = AtQ̃A†

t .
It has been proven in [7] that the optimal Q̃ is diago-

nal in structure for both general correlated Rayleigh fad-
ing MIMO channel and correlated Ricean MIMO channel,
when the channel statistics is available at the transmitter.
We denote this optimal input covariance matrix as Λ◦ =
diag{λ1, λ2, . . . , λnt

}. Actually λi represents the power
allocated to the i-th virtual transmit angle.

In [4] and [5], it was shown that the principal eigenvec-
tor of the optimal input covariance matrix must be in the
same direction as the LOS path, and all other eigenvectors
can be chosen arbitrarily as long as they are orthogonal to
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each other. The optimal input covariance matrix is diag-
onal in our virtual domain, thus the principle eigenvector
corresponds to the first virtual transmit angle, and the other
eigenvectors along other virtual transmit angles are orthog-
onal by the property of 2-D Fourier transform. However,
proof in [7] is based on the independent but not necessarily
identical entries in the virtual channel matrix, while [4] [5]
assumes i.i.d. entries for the diffuse components.

4. ERGODIC CAPACITY

Previous work on capacity has used Monte Carlo method
to find the optimal input distribution first, and then numer-
ically calculate the capacity (see, e.g. [7]). In this section,
instead of the numerical method, we provide tight bounds
on the capacity by analysis. The bounds are used in both op-
timal input distribution characterization and capacity evalu-
ation.

In order to proceed the analysis, we need to make further
assumption: a circular d-diagonal channel model as in [8]
is adopted in this section, which is an extension of the d-
diagonal model. In the d-diagonal structure, d denotes the
number of non-zero entries σ2

k,� above and below diagonal.

Vd(k, �) =
{

σ2
k,�, max(nt, k − d) ≤ � ≤ min(0, k − d)

0, otherwise

The circular model makes the number of nonvanishing ele-
ments in each row to be equal. We further assume that these
nonvanishing elements have same distribution σ2

k,� = σ2 in
the following analysis. When d = 0, the diffuse channel
matrix is diagonal, which is refereed to as diagonal scat-
tering. When d = nr/2, the channel matrix has non-zero
entries everywhere, which is refereed to as maximally rich
scattering.

We use techniques similar to those used in [9] to get
the analytical expression for the lower bound and the upper
bound of the Ricean MIMO channel capacity. Without loss
of generality, we assume that nr ≥ nt. To characterize the
capacity lower bound and upper bound, we first apply a QR
decomposition on H̃ as H̃ = Q′R, where Q′ is an unitary
matrix and R is an upper triangular matrix with independent
entries.

The capacity can be lower bounded as:

C = E
[
log det

(
I + SNR

nt
RΛ◦R†

)]

≥ E
[∑nt

i=1 log
(
1 + SNR

nt
λi|Ri,i|2

)]
(12)

where |Ri,i|2, are chi-square distributed with 2df(i) degrees
of freedom χ2

2df(i). The degree of freedom df(i) is a func-
tion of nt , nr and d, taking values in the range [1, min(nr, 2d+
1)]. |Ri,i|2 is central (zero-mean) chi-square distributed for
2 ≤ i ≤ nt, and non-central (non zero-mean) chi-square
distributed for i = 1.

The capacity can also be upper bounded as:

C ≤ E
[∑nt

i=1 log
(
1 + SNR

nt
λi

(|Ri,i|2

+
∑min(i+d,nt)

m=i+1 |Ri,m|2))]
.

The techniques used in [10] can be applied to further
characterize the bounds, by the convexity of log2(1 + aex)
and Jensen’s Inequality:

E
[
log2(1 + SNR

nt
|Ri,i|2)

]
≥ log2(1 + SNR

nt
exp(E[ln |Ri,i|2]))

Since |Ri,i|2 ∼ χ2
2df(i) central for 2 ≤ i ≤ nt, the expecta-

tion of its logarithm can be calculated as:

E
[
ln |Ri,i|2

]
= ψ(2df(i)) (13)

where ψ(x) is the digamma function. Similarly, the expec-
tation of the logarithm of the |R1,1|2 term can be calculated
as:

E
[
ln |R1,1|2

]
= e−

r
1−r ntnr

∑∞
k=0

ψ(k+df(1))( r
1−r ntnr)k

k!

def= S( r
1−r ntnr) (14)

where df(1) = min(nr, 2d + 1).
The lower bound on the capacity is then obtained by

substituting (13) and (14) into (12):

CLB = log
(
1 + SNR

nt
(1 − r)λ1 exp

(
S( r

1−r ntnr)
))

+
∑nt

i=2 log
(
1 + SNR

nt

nr

min(nr,2d+1) (1 − r)λi exp (ψ(2df(i)))
)

However, a closed-form expression for (14) cannot be
obtained. When r gets close to 1.0, i.e., the Ricean factor
approaches infinity, the first term in CLB is not easy to cal-
culate. Under this condition, the following approximation
to the first term is found to be accurate:

log
(
1 + SNR

nt
λ1 exp (S(rntnr))

)
(15)

In practice, the optimal input distribution matrix Λ◦ has
to be calculated at the transmitter, based on knowledge of
the channel statistics. The optimal allocation of power among
the diagonal entries is a constrained convex optimization
problem and can be solved numerically via gradient de-
scent algorithms. However, this numerical calculation is
very slow [7]. We propose an analytical method to find
the optimal power allocation, which we denote as power
allocation by analysis. The following terms from the above
analysis are used as approximate eigenvalues of the trans-
mit correlation matrix: µ1 = exp (S(rntnr)), and µi =
(1 − r) exp(ψ(2df(i))) for 2 ≤ i ≤ nt.

Based on the approximate eigenvalues µi, the power al-
location is the well-known waterfilling strategy [1]. Since
the transmitter can only determine the strongest eigenmode
in the LOS direction but not the other eigenmodes, the trans-
mitter allocates the desired power λ1 in the LOS virtual an-
gle direction, and distributes the remaining power evenly
among the other virtual transmit angles, i.e., λi = (nt −
λ1)/(nt − 1) for i = 2, . . . , nt.
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Fig. 1. Specular MIMO ergodic capacity bounds.

5. NUMERICAL RESULTS

We select the diffuse part of the Ricean MIMO channel to
be maximally rich scattering i.i.d. Rayleigh fading, i.e., the
d value in the d-diagonal model is set as d = nr/2. In
Fig. 1, we simulate the capacity of an nt = 6 and nr = 8
Ricean MIMO channel at SNR of 15 dB. We approximate
the infinite summation with the sum of the first 500 terms.
From the figure, the lower bound and the simulation results
are very close for this high SNR case.

In Fig. 2, we compare the mutual information curves for
three different power allocation strategies: optimal power
allocation via numerical method, proposed power alloca-
tion by analysis method, and equal power allocation with
i.i.d. input. From the figure, power allocation by analysis is
almost optimal. It is also interesting that the capacity with
optimal power allocation starts to increase when r > 0.95.
This can be explained that r = 0.95 is the threshold for
beamforming to be the optimal transmit power allocation
strategy. When r > 0.95, beamforming is optimal. As r
increases from 0.95 to 1.0, the channel energy wasted in the
diffuse channel components (non-beamforming directions)
decreases and thus the beamforming channel capacity in-
creases.

6. CONCLUSIONS

We have exploited using virtual channel representation to
analyze the ergodic capacity of a Ricean MIMO fading chan-
nel. We considered both deterministic and random LOS
cases, where non zero-mean Gaussian modelling and zero-
mean non-Gaussian modelling were applied respectively.
Previous work on capacity used Monte Carlo technology
to find the optimal input distribution first, and then numeri-
cally calculate the capacity. We provided tight bounds that
are useful in both optimal input distribution characteriza-
tion and capacity evaluation. The analysis was verified by
numerical results.
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