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ABSTRACT
We study the limiting throughput of an MIMO (multiple-
input multiple output) ad hoc network with K simultane-
ous communicating transceiver pairs. Assume that each
transmitter is equipped with t antennas and receiver with
r antennas, we show that in the absence of channel state in-
formation (CSI) at the transmitters, the asymptotic network
throughput is limited by r nats/s/Hz as K → ∞. With
CSI corresponding to the desired receiver available at the
transmitter, we demonstrate that an asymptotic throughput
of t+ r +2

√
tr nats/s/Hz can be achieved using a simple

beamforming approach. Further, we show that the asymp-
totically optimal transmission scheme with CSI amounts to
a single-user water£lling for a properly scaled channel.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems by using
multiple antenna transceivers have shown great promise in
providing spectral ef£ciencies that are several orders of mag-
nitude higher than that of the traditional communication sys-
tems [1,2]. Recently, there is an increasing need for mobile
networks with distributed transmitters and receivers, typi-
cally referred to as mobile ad hoc networks (MANET). It is,
therefore, of great interest to study the performance limit of
MANET with MIMO transceivers, i.e., when all the nodes
are equipped with multiple antennas.

In [3], Blum studied the capacity of a MIMO network
with simultaneous pairwise transmissions. Without know-
ing the channel state information (CSI) at the transmitter,
the author showed that, depending on the interference to
noise power ratio, the transmitter should either put equal
power into each antenna (optimal in the interference-free
MIMO transmission) or operate in a singular mode (i.e., it
puts all power on a single element). In this paper, we estab-
lish the limiting throughput as the number of transmitting
pairs, denoted by K, increases. By assuming t transmit and
r receive antennas for each transceiver pair, we show that as
K increases, the total throughput of is fundamentally lim-
ited by the receive antenna size r and is independent of t
and the transmit power. This results in a per user through-
put of O( 1

K ) for £xed r which decreases to 0 as K → ∞.
∗This work was supported by the AFRL/IF through the 2004 summer

visiting faculty research program.

To achieve non-zero per node throughput, one needs to scale
up r in the absence of CSI at the transmitter.

When the CSI corresponding to the desired receiver is
available at the transmitter, we show that a simple “beam-
forming” approach achieves a throughput of approximately
t + r + 2

√
tr nats/s/Hz for large t and r as K → ∞. For

example, with t = r, i.e., each transceiver uses the same
number of transmit and receive antennas, the total through-
put is 4r nats/s/Hz. Nonetheless, the asymptotic per node
throughput still decreases to zero for £xed t and r as the
number of pairs K increases. Thus, either t or r or both
need to be scaled up in the presence of CSI at the transmit-
ter for non diminishing per-user throughput. We further de-
rive the asymptotically optimal transmission schemes which
amounts to a water£lling solution for a composite channel
incorporating the interference power. The asymptotically
achievable throughput with CSI remains an open problem.

The rest of the paper is organized as follows. Section
2 describes the system model. We show in Section 3 that
in the absence of CSI, the asymptotic network throughput
with interference transmission is fundamentally limited by
the receive antenna number r and independent of other sys-
tem parameters. With CSI available at the transmitter, we
establish in Section 4 that a simple beamforming approach
can improve the throughput over the blind transmission. In
particular, the throughput scales both in t and in r and is
strictly larger than that of the CSI absent cases. Asymptot-
ically optimal signaling scheme is also derived. Numerical
examples are presented in Section 5. We conclude in Sec-
tion 6 with remarks on future research topics for MIMO
MANET. Natural logarithm is assumed throughout this pa-
per hence the obtained spectral ef£ciency is in nats/s/Hz
and we use |A| to denote the determinant of matrix A.

2. NETWORK MODEL AND ASSUMPTIONS

The system layout is essentially the same as that of [3] where
all MIMO nodes communicate in the same channel. The
following assumptions are used throughout this paper.

A1 All users have identical power constraint P .

A2 A rich scattering environment: each channel matrix con-
sists of independent identically distributed (i.i.d.) en-
tries with zero mean and unit variance.
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A3 The combined path loss/shadow fading, denoted by ηkj ,
between the jth transmitter and the kth receiver is
i.i.d. with mean η̄. Further ηkj (large scale fading)
is independent with the corresponding channel matrix
Hkj which captures small scale fading.

A4 Circularly complex Gaussian noise with covariance ma-
trix σ2

Ir is assumed at each receiver.

A5 Gaussian codes are assumed for each user. This does
not lose any optimality in Gaussian noise.

Assume that the transmit vector for the jth transmitter
has a covariance matrix Rj , the total throughput, C, is the
sum of the mutual information (MI) for all transceiver pairs

K∑
k=1

E

⎡
⎣log

∣∣∣∣∣∣Ir + ηkHkRkH
H
k

⎛
⎝σ2

Ir +
∑
j �=k

ηkjHkjRjH
H
kj

⎞
⎠

−1
∣∣∣∣∣∣
⎤
⎦

We £rst introduce the following lemma.

Lemma 1 If H is a r × t matrix with i.i.d. zero mean unit
variance entries, R is a t×t Hermitian and positive semidef-
inite matrix with trace a, then E[HRH

H ] = aI.

While Lemma 1 holds for a deterministic matrix R, it can be
trivially extended to cases where R is a Hermitian and pos-
itive semide£nite random matrix with the same trace con-
straint, as long as it is independent of H.

3. NETWORK THROUGHPUT IN THE ABSENCE
OF CSI AT THE TRANSMITTER

In [3], it was shown that in the absence of CSI at the trans-
mitter in MIMO ad hoc networks, the optimal signaling
shoud put equal power on all antennas (i.e., using the op-
timal interference free transmission [2]) with weak interfer-
ence; while for strong interference, the transmitter should
operate in a singular mode: it puts all its power on a sin-
gle antenna (which is equivalent to transmitting identical
information through all antennas). We establish in this sec-
tion that with both channel blind transmission schemes, the
asymptotic throughput is limited solely by the receive an-
tenna size r.

3.1. Interference-free mode

Operating in the interference-free mode, the transmit vector
from the kth transmitter has a covariance matrix R = P

t It.
The total throughput C is therefore

K∑
k=1

E

⎡
⎣log

∣∣∣∣∣∣Ir +
ηkP

t
HkH

H
k

⎛
⎝σ2

Ir +
P

t

∑
j �=k

ηkjHkjH
H
kj

⎞
⎠

−1
∣∣∣∣∣∣
⎤
⎦

As K → ∞, by the law of large number (LLN) and the fact
that ηkj and Hkj are independent (A3), we have

lim
K→∞

1

K − 1

∑
j �=k

ηkjHkjH
H
kj = E [

ηkjHkjH
H
kj

]
= η̄tIr

Therefore

C
K→∞

=

K∑
k=1

E

[
log

∣∣∣∣Ir +
ηkP

t
HkH

H
k

(
σ2

Ir + P (K − 1)η̄Ir

)−1
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]

≤

K∑
k=1

log

∣∣∣∣E
[(

Ir +
1

σ2 + P η̄(K − 1)

ηkP

t
HkH

H
k

)]∣∣∣∣

=

K∑
k=1

log

∣∣∣∣Ir +
η̄P

σ2 + P η̄(K − 1)
Ir

∣∣∣∣
= rK log

(
1 +

η̄P

σ2 + P η̄(K − 1)

)

K→∞
= r nats/s/Hz (1)

where the inequality follows from Jensen’s inequality (log |·|
is concave) and (1) follows from the fact

lim
x→∞

x log

(
1 +

1

x

)
= 1

3.2. Singular mode

Without loss of generality, assume that each transmitter puts
all the power on its £rst antenna element. Consequently, the
covariance matrix R is a singular matrix with R11 = P and
all zero elements elsewhere. Therefore, the throughput C is

K∑
k=1

E

⎡
⎣log

∣∣∣∣∣∣Ir + ηkHkRH
H
k
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Again, let K → ∞ and we have, from LLN,

lim
K→∞

1

K − 1

∑
j �=k

ηkjHkjRH
H
kj = η̄E [

HkjRH
H
kj

]

From Lemma 1, we have E
[
HkjRH

H
kj

]
= P Ir From this,

we can show in a similar fashion that

lim
K→∞

C = r nats/s/Hz

In both cases, r is the limiting network throughput. Thus,
To achieve non-zero per user throughput, one needs to scale
up r to the same order of K.

4. NETWORK THROUGHPUT WITH CSI

Consider the kth transmitter-receiver pair whose channel
matrix is Hk. With Hk available at the kth transmitter, it
is reasonable to expect that better throughput may result.
In particular, since the transmitter can fully utilize its mul-
tiple antennas for interference suppression/avoidance, one
expects that the achievable throughput also depends on the
number of transmit antennas. We show in the following
that this is indeed the case. By limiting the transmitter pro-
cessing to simple beamforming, we obtain an asymptotic
throughput of t + r + 2

√
tr which scales both in t and in r.
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Consider, for the kth user, one uses a beamforming vec-
tor

√
Pck, with ‖ck‖ = 1, which is determined solely using

the channel matrix Hk; i.e., ck = ck (Hk). The network
throughput is now

C
K→∞

=

K∑
k=1

E
[
log

∣∣∣∣Ir +
ηkP

σ2 + P η̄(K − 1)
Hkckc

H
k H

H
k

∣∣∣∣
]

where we again used Lemma 1 along with the fact that ck

is independent of Hkj for j �= k. Implied in the above
throughput is a block fading channel model: each channel
state realization is assumed to have suf£cient dwelling time
for capacity achieving coding. We comment here that the
singular mode described in Section 3 is a special case of
the beamforming scheme with ck = [1, 0, · · · , 0]T which
is channel independent. With the knowledge of Hk, one
expects a better ck that maximizes the mutual information
may result. Using log |I + AB| = log |I + BA|, we have

log

∣∣∣∣Ir +
ηkP

σ2 + P η̄(K − 1)
Hkckc

H
k H

H
k

∣∣∣∣
= log

(
1 +

ηkP

σ2 + P η̄(K − 1)
c

H
k H

H
k Hkck

)

Clearly, maximizing the quadratic term c
H
k H

H
k Hkck sub-

ject to a norm constraint yields a beamforming vector ck

that coincides with the eigenvector corresponding to the largest
eigenvalue of the matrix H

H
k Hk, denoted by v1. We now

try to quantify the network throughput of this simple beam-
forming approach. First, cH

k H
H
k Hkck = v

H
1 H

H
k Hkv1 =

λ
(k)
1 where λ

(k)
1 is the maximum eigenvalue of H

H
k Hk. To

£nd the corresponding mutual information, we can show

Theorem 1 C = E[λ
(k)
1 ] nats/s/Hz.

To compute E[λ
(k)
1 ], notice that Hk being a channel matrix

of complex Gaussian i.i.d. entries, H
H
k Hk is essentially a

sample covariance matrix of a vector random variable h ∼
CN (0, I). From [4], for large t, r,

E
[
λ

(k)
1

]
≈ (

√
t +

√
r)2 (2)

While this asymptotic throughput is still independent of the
transmit power, one can improve the throughput by scaling
up t or r or both. The fact that transmitting along the sin-
gular direction that has the largest SNR (largest eigenvalue
of H

H
k Hk) yields the maximum throughput is not surpris-

ing: since the channel matrices are assumed to be indepen-
dent, the interference power are evenly distributed among
all subspaces when K is large. As such, sending informa-
tion along only the strongest eigenmode can limit the to-
tal interference power while maximizing the signal power.
Next, we generalize the beamforming idea and present the
asymptotically optimal transmitting scheme. Consider that
the transmit vector for the kth transmitter has a covariance

matrix Rk with trace(Rk) = P . The throughput is now

K∑
k=1

E

⎡
⎣log

∣∣∣∣∣∣Ir + ηkHkRkH
H
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⎛
⎝σ2
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H
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⎞
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⎤
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Again, invoke the asymptotic assumption (K → ∞) and
use Lemma 1, we can get

C
K→∞

=

K∑
k=1

E
[
log

∣∣∣∣It + Rk
ηk

σ2 + P η̄(K − 1)
H

H
k Hk

∣∣∣∣
]

Hence the asymptotically optimal Rk corresponds to sim-
ply water£lling for the combined channel covariance matrix

ηk

σ2+P η̄(K−1)H
H
k Hk. In other words, if we de£ne

Ĥk =

(
ηk

σ2 + P η̄(K − 1)

)1/2

Hk (3)

Then Rk should be chosen through single user water£lling
corresponding to the channel matrix Ĥk [2]. Notice this
is different than simply scaling the water£lling solution for
Hk: the water£lling level is determined by the inverse of the
eigenvalues of Ĥ

H
k Ĥk hence depends on the scaling factor

in a nonlinear fashion.

5. NUMERICAL EXAMPLES

In this section, we use numerical examples to study the net-
work throughput of a MIMO ad hoc network. In particu-
lar, we demonstrate that, with CSI available at the transmit-
ter, substantially larger network throughput can be achieved
than the channel-blind approach. This is in sharp contrast to
the single user MIMO systems where CSI provides a con-
stant yet typically insigni£cant gain over the blind transmit-
ter for a well behaved channel matrix.

Throughout this section, we assume that Hkj , consists
of i.i.d. complex Gaussian entries, implying a rich scatter-
ing environment with Rayleigh ¤at fading channels. The
path loss/shadowing coef£cient ηkj is lognormal distributed
appropriately normalized to be unit mean (hence the path
loss is assumed to be absorbed through appropriately scal-
ing the noise variance). We plot the sum (network) through-
put as a function of K for two different parameter sets:

1. t = r = 16, P = 2, σ2 = 1. The result is in Fig. 1.

2. t = r = 16, P = 10, σ2 = 1. The result is in Fig. 2.

We simulate the throughput by averaging, for each case,
over 50 independently generated channel matrices for each
transmitter-receiver pair.
Remarks

• In all cases, knowing the CSI at the transmitter (the
water£lling and beamforming approaches) improves
substantially the network throughput over the channel-
blind transmission schemes (‘interference-free’ and
the singular modes).
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• Both channel-blind transmission schemes have asymp-
totic (K large) throughput that is close to r nats/s/Hz,
or (r log2 e) bits/s/Hz. Further, this asymptotic value
is independent of the transmit power (compare Figs 1
and 2).

• The asymptotic throughput for the simple beamform-
ing approach is less the t+ r +2

√
tr. This is because

of the fact that Eq. (2) is only true asymptotically
(i.e., both r and t are suf£ciently large). Otherwise,
the distribution of the largest eigenvalue of a sample
covariance matrix is skewed toward smaller values,
resulting in a smaller expected value. Increasing t and
r will improve the accuracy of this approximation.

6. CONCLUSIONS

MIMO communications in an ad hoc network is studied in
this paper. We demonstrated that the knowledge of CSI
at the transmitter is instrumental in obtaining higher net-
work throughput. Without CSI, we showed that the network
throughput is fundamentally limited by the receiver antenna
size. With CSI, the throughput scales as t + r + 2

√
tr

nats/s/Hz with a simple beamforming approach hence
improves when either t or r increases. Asymptotically opti-
mal signaling for MIMO interference transmission with CSI
was shown to be a simple water£lling solution.

We expect that, with stronger CSI assumption, better
throughput may result. For example if a transmitter knows
the channels for both its desired receiver and all other re-
ceivers that it interferes with, interference suppression beam-
forming may be used in limiting the interference power.
This will be reported elsewhere.

An alternative way of utilizing the MIMO potential in
MANET is to use channelized transmission, i.e., the to-
tal time-frequency is divided into orthogonal subchannels
to allow interference-free MIMO communication in each
subchannel. This, however, puts exacting demand on the
medium access control (MAC). To accommodate the dy-
namic traf£c in a MANET, an adaptive MAC is needed to
guarantee access to all active users while leave no idle chan-
nels for maximal bandwidth ef£ciency. This is a formidable
task in an ad hoc network due to the lack of a central node.
On the other hand, recognizing that multiple antennas at the
transceivers provide inherent multiplexing capability due to
their interference cancellation capability, it is imperative to
study MIMO communication in ad hoc networks with in-
terference transmission. Not only it may alleviate the need
for a fully adaptive MAC layer or the effect of spectrum
underutilization with £xed channel allocation, allowing si-
multaneous transmissions also helps exploit the multiuser
diversity that may potentially improve upon the channel-
ized MIMO approach. Analysis of channelized MIMO and
its comparison with interference transmission will also be
reported in the near future.
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Fig. 1. The sum throughput of a MIMO ad hoc network
with t = r = 16, P = 2, σ2 = 1.
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