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ABSTRACT

The capacity of multiple antenna systems in the low-power regime
has gained recently much attention [1]. It turned out that antenna
correlation and Ricean factors do not have an impact on the Eb

N0 min
but on the slope in bits/s/Hz/(3dB). In this work, we analyze the
impact of different types of CSI on the multiple antenna capacity
in the low-power regime. We show that the Eb

N0 min
is reduced as

well as the slope is increased by having channel knowledge at the
transmit antenna array. The impact of spatial correlation on the two
performance measures is completely characterized. Finally, the
theoretical results are illustrated by numerical simulations showing
the spectral efficiency over the received Eb

N0
for various systems.

1. INTRODUCTION

Multiple antennas can increase the performance and reliability of
transmission over multipath fading channels [2, 3]. The single-
user capacity of the multiple antenna channel has been studied ex-
tensively with respect to many aspects [4].

In [5], the spectral efficiency in the wideband regime was stud-
ied using two novel performance metrics, namely the minimum
Eb
N0

and the wideband slope. These quantities characterize the first
order behaviour of the capacity at low SNR values. For devel-
oping the optimal system design it is necessary to understand the
connection between the optimal transmit strategies at low SNR,
the minimum Eb

N0
, and the wideband slope. Furthermore, it is im-

portant to characterize the impact of the channel statistics on the
spectral efficiency. In this work, we use the results and expressions
from [5] to gain insights into the optimal system design in MIMO
channels in the low SNR regime.

For the uncorrelated Rayleigh fading case, these performance
metrics were derived in [5, Theorem12] for the informed transmit-
ter case, and [5, Theorem13] for the uninformed transmitter case
with perfect CSI at the receiver only. In [1], the uninformed trans-
mitter case with correlation in Rician fading MIMO channels was
studied. It turned out, that transmit and receive correlation has no
impact on the minimum Eb

N0
but on the wideband slope. This was

quantified in [1] by the correlation number.
The contribution of our work is the analysis of the minimum

Eb
N0

and the wideband slope S0 in double correlated Rayleigh fad-
ing with different types of CSI at the transmitter, namely perfect
and no CSI, and correlation knowledge. We use Majorization the-
ory in order to analyze the impact of correlation. It turns out that

1. for no CSI, the wideband slope is Schur-concave with re-
spect to transmit and receive correlation,

2. for perfect CSI, the minimum Eb
N0

is Schur-concave with
respect to transmit and receive correlation and the wideband
slope is Schur-convex with respect to correlation,

3. and for covariance knowledge, the minimum Eb
N0

is Schur-
concave with respect to transmit correlation and the wide-
band slope is Schur-concave with respect to receive corre-
lation.

2. SYSTEM MODEL

The transmitter has nT transmit antennas. The receiver applies nR

receive antennas. The received signal vector y in the quasi-static
block flat fading MIMO channel H is given by

y = Hx + n (1)

with transmit signal x and additive white Gaussian noise (AWGN)
vector n ∼ CN (0, σ2

nI). The channel matrix H for the case in
which we have correlated transmit and correlated receive antennas
is modeled as

H = R
1
2
R · W · R

1
2
T (2)

with transmit correlation matrix RT = UT DT UH
T and receive

correlation matrix RR = URDRUH
R . UT and UR are the

matrices with the eigenvectors of RT and RR respectively, and
DT , DR are diagonal matrices with the eigenvalues of the ma-
trix RT and RR, respectively, i.e. DT = diag[λT

1 , ..., λT
nT

]

and DR = diag[λR
1 , ..., λR

nR
]. Denote the vector of eigenvalues

with λT and λR respectively. Without loss of generality, we as-
sume that all eigenvalues are ordered with decreasing order, i.e.
λT

1 ≥ λT
2 ≥ ... ≥ λT

nT
. The random matrix W has zero-mean

independent complex Gaussian identically distributed entries, i.e.
W ∼ CN (0, I). In the following, we will normalize the transmit
and receive correlation matrix and assume that

� nT
k=1 λT

k = nT

and
� nR

k=1 λR
k = nR. All logarithms are with respect to base 2 if

not otherwise stated.

3. PRELIMINARIES

3.1. Spectral efficiency in the low power regime

In [5], the low-SNR regime has been analyzed and two perfor-
mance measures namely the Eb

N0 min
and the wideband slope S0

were introduced. The system parameters bandwidth B, transmis-
sion rate R, transmit power P and spectral efficiency C( Eb

N0
) sat-

isfy the fundamental limit

R

B
≤ C

�
Eb

N0 � . (3)
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At low SNR, the function C( Eb
N0

) can be expressed as [5]

C

�
Eb

N0 � ≈ S0

3dB

�
Eb

N0 ��� dB
− Eb

N0 min ��� dB � (4)

with

Eb

N0 min

=
loge 2

Ċ(0)
and S0 =

2
�
Ċ(0) � 2

−C̈(0)
. (5)

The closer Eb
N0

gets to Eb
N0 min

the better is the approximation in
(4).

3.2. Measure of spatial correlation

In order to compare two correlation scenarios, the following frame-
work can be applied: For two vectors x, y ∈ Rn one says that the
vector x majorizes the vector y and writes x � y if

m�
k=1

xk ≥
m�

k=1

yk ∀m = 1, ..., n − 1, and
n�

k=1

xk =

n�
k=1

yk.

A real-valued function Φ defined on A ⊂ Rn is said to be
Schur-convex on A if from x � y on A follows Φ(x) ≥ Φ(y).
Similarly, Φ is said to be Schur-concave on A if from x � y on
A follows Φ(x) ≤ Φ(y).

For further information about majorization theory see [6]. The
following definition provides a measure for comparison of two co-
variance matrices. E.g. the transmit correlation matrix R1

T is more
correlated than R2

T if and only if
� m

l=1 λT,1
l ≥ � m

l=1 µT,2
l for

m = 1...n − 1 and
� n

l=1 λT,1
l =

� n
l=1 λT,2

l .
It can be shown that vectors with more than two components

cannot be totally ordered. This is a problem of all possible or-
ders for comparing correlation vectors. The case in which the
transmit antennas are fully correlated corresponds to λT

1 = nT ,
λT

2 = ... = λT
nT

= 0. The case in which the transmit antennas are
fully uncorrelated corresponds to λT

1 = λT
2 = ... = λT

nT
= 1.

We need the following result (see [6, Theorem 3.A.4]) which
is sometimes called Schur’s condition. It provides an approach
for testing whether some vector valued function is Schur-convex
or not. Schur’s condition for the Schur-convexity of a symmetric
function f(x) is given as [6, p. 57]

(x1 − x2)

�
∂f

∂x1
− ∂f

∂x2 � ≥ 0 (6)

for all x1, x2 ∈ In. Furthermore, f(x) is a Schur-concave func-
tion on In if f(x) is symmetric and

(x1 − x2)

�
∂f

∂x1
− ∂f

∂x2 � ≤ 0 (7)

for all x1, x2 ∈ In.

4. MINIMUM Eb
N0

AND WIDEBAND SLOPE S0 FOR
DIFFERENT CSI SCENARIOS

4.1. Uninformed transmitter

In [1, 7], the two performance measures in (5) were computed for
the MIMO channel without channel state information (CSI) at the
transmitter and with perfect CSI at the receiver. In this case the

ergodic capacity as a function of the SNR1 ρ = E[||x||2]
N0

is given
by

CnCSI(ρ) = E � log det

�
I +

ρ

nT
HHH � � . (8)

The first and second derivative of (15) is given by

ĊnCSI(0) =
1

nT
E tr � HHH � = nR (9)

C̈nCSI(0) = − 1

n2
T

E tr

� �
HHH � 2 �

= n2
T tr R2

R + n2
R tr R2

T . (10)

As a result, the minimum Eb
N0

and the wideband slope is given by
[5, Theorem 13]

Eb

N0

nCSI

min

=
loge 2

nR
(11)

SnCSI
0 =

2n2
T n2

R

n2
T

nR�
k=1

(λR
k )2 + n2

R

nT�
k=1

(λT
k )2

. (12)

Note that we focus on the transmitted Eb
N0

as in [1].

In (11) and (12) the two expressions for the minimum Eb
N0

and
the widebandslope are given. Obviously, the transmit and receive
correlation has no impact on the minimum Eb

N0
but on the slope S0.

The following theorem characterize the impact of correlation.

Lemma 1 Fix the receive correlation λR. The wideband slope
SnCSI

0 as a function of the transmit correlation S0(λR) is Schur-
concave, i.e.

λ1
T 	 λ2

T =⇒ SnCSI
0 (λ1

T ) ≤ SnCSI
0 (λ2

T ). (13)

For fixed transmit correlation, the wideband slope SnCSI
0 is Schur-

concave with respect to the receive correlation, i.e.

λ1
R 	 λ2

R =⇒ SnCSI
0 (λ1

R) ≤ SnCSI
0 (λ2

R). (14)

Proof: Consider the function f(x) =
� n

k=1 x2
k. This function

is Schur-convex because x2 is a convex function [6, Proposition
3.C.1]. As a result, the function g(x) = c1

f(x)+c2
with c1 > 0 and

c2 > 0 is Schur-concave.

Remark: In [1, 7], the dispersion is introduced as the measure of
correlation. It can be easily shown following the same steps as in
the proof of Theorem 1 that the dispersion of a n × n Hermitian
matrix A defined as

ζ(A) =
tr A2

n

is Schur-convex with respect to the eigenvalues of A.

1Note that the capacity as a function of SNR is different from the spec-
tral effi ciency as a function of Eb

N0
.
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Actually, the Schur-concavity of the average mutual information
without CSI at the transmitter and perfect CSI at the receiver has
been shown in [8] for all SNR values. Therefore the result in The-
orem 1 follows as a special case for the low power regime. This
is nevertheless notable since different behaviour of capacity and
spectral efficiency were reported in some cases.

In figure 1, the spectral efficiency over Eb
N0

is shown for dif-
ferent MIMO systems with uninformed transmitter and perfectly
informed receiver. The impact of the number of receive antennas
on the minimum Eb

N0
can be observed. In addition to this, the wide-

band slope S0 decreases with increasing transmitter and receiver
correlation. The correlation eigenvalues in the simulation in figure
1 are [1.8, 0.2] for Tx and Rx correlation.
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Fig. 1. Spectral Efficiency over Eb
N0

for different MIMO systems
and transmitter and receiver correlation for uninformed transmit-
ter.

4.2. Informed transmitter

The ergodic capacity with an informed transmitter for nT ≥ nR is
given by

CpCSI(ρ) = E max� nT
k=1 pk=ρ

pk≥0∀1≤k≤nT

nT�
k=1

log(1 + λH
k pk). (15)

Since, we are in the low power regime, there is always the com-
plete power allocated to the largest eigenvalue of the instantaneous
channel. We are in Rayleigh fading, the probability that two or
more eigenvalues are equal and the largest is zero. This scenario
corresponds to the case in [5, Theorem 12] in which the transmitter
knows the eigenspace of the maximum eigenvalue of HHH but
cannot employ temporal power control, i.e.

C0
pCSI(ρ) = E log(1 + ρλmax(HHH)). (16)

The Eb
N0 min

and the wideband slope S0 are given by

Eb

N0

pCSI

min

=
loge 2

Eλmax(HHH)
(17)

SpCSI
0 =

2(Eλmax(HHH))2

E(λmax(HHH))2
. (18)

The impact of correlation on the performance metrics in (17) and
(18) is characterized in the following theorem.

Theorem 2 With perfect CSI at the transmitter and receiver, the
minimum Eb

N0
is Schur-concave with respect to the channel cor-

relation. The wideband slope is Schur-convex with respect to the
correlation.

This can be proven by showing that Eλmax(RT HRRHH) de-
creases with increasing correlation in RT and RR and showing
that (Eλmax(RT HRRHH))2 increases slowier with increasing
correlation than Eλmax(RT HRRHH)2.

Remark: Note, that a small Eb
N0

is better than a large one. This

means with less correlation a lower Eb
N0

is achieved and correla-
tion improves reliability. For the wideband slope it is the other
way round: The higher S0 is the better is the performance of the
systems.

4.3. Channel statistics knowledge

The ergodic capacity with covariance knowledge at the transmitter
is given by [9, 10]

CcovCSI(ρ) = max� nT
k=1 pk=ρ

pk≥0∀1≤k≤nT

E log ���
I +

nT�
k=1

pkλkw̃kw̃H
k ���

with independent Gaussian distributed w̃k including the receive
correlation matrix eigenvalues

w̃k =
� �

λR
1 w1,k,

�
λR

2 w2,k, . . . ,
�

λR
nR

wnR,k � T

.

For small SNR values, p1 = ρ and p2 = p3 = ... = 0. The
ergodic capacity is the given by

C0
covCSI(ρ) = E log � 1 + ρλT

1

nR�
k=1

λR
k wk � . (19)

The first and second derivative of the capacity with respect to ρ at
the point ρ = 0 are given by�

Eb

N0 � covCSI

min

=
loge 2

nRλT
1

(20)

ScovCSI
0 =

2n2
R

E (
� nR

k=1 λR
k wk)

2 . (21)

This correspond to the result in [5, equation (236)]. The follow-
ing theorem characterizes the impact of correlation on the perfor-
mance metrics in (20) and (21).

Theorem 3 With covariance knowledge at the transmitter and per-
fect CSI at the receiver, the minimum Eb

N0
is Schur-concave with

respect to transmitter correlation and does not depend on the re-
ceiver correlation. The wideband slope is Schur-concave with re-
spect to the receiver correlation and does not depend on the trans-
mitter correlation.

Proof: The Schur-concavity of the minimum Eb
N0

is obvious, be-

cause the first eigenvalue of the transmit correlation λT
1 is monotonic

increasing with increasing correlation and its inverse therefore monotonic
decreasing. The receive correlation occurs only in its sum of the
eigenvalues. Since the trace is constrained to be equal to nR, the
receive correlation has no impact on the minimum Eb

N0
.
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The transmit correlation does not occur in the wideband slope.
It remains to show that the function f(λR) = E � � nR

k=1 λR
k wk � 2

is Schur-convex. In order to verify Schur’s condition in (6), we
obtain for the difference of the partial derivatives of f with respect
to λR

1 and λR
2 the following expression

∆ = 2E

�
(w1 − w2) � nR�

k=1

λR
k wk � �

= 2λR
1 E(w2

1 − w1) − λR
2 E(w2

2 − w2)

= λR
1 − λR

2 ≥ 0. (22)

The inequality in (22) verifies Schur-condition. As a result, the
wideband slope S0 as a function of receive correlation is Schur-
concave.

Remark: Note, that here transmit correlation improves the sys-
tem reliability, i.e. it decreases the minimum Eb

N0
. The more cor-

related the receive antennas are the less is the wideband slope S0,
i.e. the performance decreases with increasing correlation.

4.4. Comparison between different CSI scenarios

The minimum Eb
N0

of the three CSI scenarios are connected by the
following inequalities

loge 2

�
Eb

N0

nCSI

min � −1

= nR ≤ nRλT
1 = loge 2

�
Eb

N0

covCSI

min � −1

with equality for completely uncorrelated transmit antennas and

loge 2

�
Eb

N0

covCSI

min � −1

= nRλT
1 ≤

Eλmax(HHH) = loge 2

�
Eb

N0

pCSI

min � −1

with equality for completely correlated transmit antennas and un-
correlated receive antennas. The last inequality follows from the
fact that Eλmax(HHH) is monotonic increasing with increasing
transmit and receive correlation and from

Eλmax(HHH) = Eλmax(RT W W H)

≥ λmax(RT )Eλmax(W W H) ≥ λT
1 nR (23)

These inequalities are illustrated in figure 2. The left side corre-
sponds to the completely correlated case λT

2 = 0 and the right side
corresponds to the completely uncorrelated case λT

2 = λT
1 = 1.

5. CONCLUSION

In this work, the spectral efficiency of MIMO systems in spatially
correlated Rayleigh fading and with different types of CSI was
studied. Depending on the type of CSI at the transmitter the mini-
mum Eb

N0
does or does not depend on the channel correlation. The

connection between the dispersion of the channel as a measure of
correlation and majorization has been pointed out. If the transmit-
ter has no CSI transmit and receive correlation decrease the wide-
band slope. If the transmitter has perfect CSI, correlation improves
the performance in terms of minimum Eb

N0
and wideband slope S0.

If the transmitter has covariance knowledge, the minimum Eb
N0

and
the wideband slope is Schur-concave, i.e. the first order behav-
iour of the spectral efficiency improves with increasing transmit

correlation but the second order behavior degrades with increasing
receiver correlation.
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