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ABSTRACT

We consider a wireless network in which a single source trans-
mits its message with the help of multiple cooperative relays. In
our model the source broadcasts the message and the relays re-
transmit it as soon as they are able to produce an inference of ac-
ceptable quality. If the network is dense, multiple nodes will quasi-
synchronously retransmit the source message, acting as groups of
cooperative relays thereby increasing the range of transmission. In
this paper, we analyze the behavior of such cooperative networks
with respect to parameters such as the source and relay transmis-
sion powers by deriving a dynamical system model using a contin-
uum asymptote as the number of relay nodes goes to infinity. The
methodology developed in this paper can be used to analyze the
performance of other cooperative protocols.

1. INTRODUCTION

We consider a network with cooperative transmissions, assuming
that a single source starts a transmission session with the intent of
either broadcasting the message to every other node or reaching a
specific destination node. In case where there is a specific destina-
tion, we assume that only a selected group of intermediate nodes
will pass the message (the selection can be done by using local and
source-destination position information).

Cooperative methods have received considerable attention re-
cently [1–4]. In most of them [1–3] the cooperating nodes transmit
packets and use orthogonal channels. This has the following disad-
vantages: (i) As the number of cooperating users increases, unless
the bandwidth is infinite, cooperative transmission is not always
providing power gains sufficient to compensate for the bandwidth
overhead and this complicates the transmission scheduling prob-
lem; (ii) Allocating resources to different users usually requires a
central control unit.

In [6] we proposed a method where the source sends messages
containing several symbols and, the receivers use a local rule based
on the Generalized Likelihood Ratio Test (GLRT) to process the
message and retransmit. This is similar to [4] which also uses a
local rule for retransmission without enforcing orthogonality, but
different from [6], [4] considers symbol by symbol relaying.

After the source transmission, only the group of nodes that
detects the presence of the message and meets a certain retrans-
mission criterion relays the message. These nodes will be called
the level-1 nodes and their transmissions will be overlapping and
quasi-synchronous. After the level-1 nodes’ transmissions, a sec-
ond set of nodes (i.e., level-2 nodes) receives the message and re-
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transmits. The level-3, level-4, · · · nodes are defined similarly.
The retransmissions continue until every relay node retransmits
once. Note that in our cooperation protocol, each level of nodes
transmit in a different time interval simply as a result of the local
rule. In fact, the rule naturally leads the self formed groups to use
orthogonal time slots for transmission while orthogonality is not
enforced for the transmissions within the same level. Hence, there
is no need for centralized control.

In [7] we analyzed the network behavior using a simple deter-
ministic channel model. Specifically, we assumed that each node
was receiving the sum power from the nodes transmitting in the
previous level; the transmission was based on the deterministic
rule that a node would cooperate if and only if the power received
from the previous level was crossing a predetermined threshold.
In [7], this simple model was sufficient to determine that in order
to guarantee that the message is passed to the entire network, it is
necessary to choose appropriately the source, the relay power and
the threshold used locally to decide on the retransmission.

However, as shown in [6] the channel model is naturally ran-
dom and so is the outcome of the local rule. In this paper, we
incorporate the random channel model developed in [6] and ana-
lyze the dynamics of our cooperative network protocol, extending
the approach used in [7]. The results are presented as the solution
of a nonlinear dynamical system. To obtain the results, we con-
sider random networks and their continuum asymptote where the
relay density goes to infinity while the total relay power is fixed.

In Section 2, we summarize previous results based on [6]. In
Section 3, the network behavior is analyzed under two different
retransmission criteria. In Section 4, we present numerical evalua-
tions of the derived dynamical system.

2. CHANNEL STATISTICS

In [6], we determined a transmission and reception model as well
the GLRT structure for the cooperative relay strategy described
in the introduction. As mentioned before, based on the result of
their local GLRT, the nodes retransmit the source message. As
argued in [6], the aggregate effect of each level is to create an
equivalent random multipath channel whose response convolves
the transmitted message. This implies that the received signal at
the i-th node is

r(i) = C h(i) + w(i), (1)

where C is a Toeplitz (convolution) M × L matrix; M is the
length of observed data and L is the channel order and the first
column of C is the message vector c. Compared to [6], we as-
sume that the GLRT estimates correctly the time window where
the message is centered and therefore the vector h(i) can be ap-
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proximated by a vector of limited order (denoted by L). Using
this assumption, let h(i)[n] be the n-th coefficient of the baseband
complex equivalent aggregate channel for the i-th node. Assuming
that the transmission between each node pair is affected by inde-
pendent zero mean small scale fading, and by deterministic large
scale path loss dβ , the mean and the covariance for h(i)[n] are as
follows: �{h(i)[n]} = 0, and

R
(i)
hh[l1, l2] =

�
��

k∈Si

Pk

d2β
i,k

�
�Ψ(l1, l2;�) = KiΨ(l1, l2;�) (2)

where Si denotes the set of nodes from which the i-th node re-
ceived contributions, i.e. the previous level nodes. The transmis-
sion power of the k-th node is denoted by Pk and dik is the dis-
tance between i-th and k-th nodes. In order to derive the result
above, we assumed that the relaying times τk dictated by the local
GLRT rule are uniformly distributed with mean µqk and variance
σ2 within a level. In µqk , qk denotes the index of the level in which
the k-th node is located. In (2), the parameter ∆ :=

√
3σ. In sum-

mary, the channel coefficients are zero mean. Assuming that the
observation vector r(i) is centered around µqi/T and p(t) is the
transmission pulse shaping filter of duration T (with normalized
power), the covariance �{h(i)[l1]h

∗(i)[l2]} is a scaled version of
the following function,

Ψ(l1, l2;�) =
1

2�
� �

−�
p(l1T − t)p(l2T − t)dt. (3)

The reader is referred to [6] for further details on the derivation of
(2) and (3).

3. ANALYSIS OF NETWORK BEHAVIOR

In this section, we assume that the channel coefficients (1) are cir-
cular complex Gaussian with zero mean and covariance given by
(2). That is,

h(i) ∼ CN (0, KiΨ) . (4)

In a dense network this assumption is plausible even when the
fading is not Rayleigh because the response is the sum of several
randomly faded replicas. Due to the fact that h(i) is random, the
sets of nodes belonging to any level is random and, therefore the
parameter Ki in (4) which depends on Si [c.f. (2)] is random as
well. The transition from one level to the other can be modelled
as a Markov chain with a large number of possible states. In order
to simplify the analysis, we use a continuum approximation valid
for a large number of nodes. This brings us two advantages: 1)
similar to our previous work in [7] we are able to substitute sums
with definite integrals over bounded regions; 2) we can use the law
of large numbers and substitute random quantities asymptotically
by their mean.

The signal attenuation model used in (2), Pk/dβ
ik is not appro-

priate for the continuum analysis, because it does not hold when
the distance between nodes is very small [8]. Hence, we will con-
sider constant power for the near-field d ≤ d0 for some small d0.
Let f(x, y) be the path-loss function at the location (x, y),

f(x, y) =

�
1

(x2+y2)β (x2 + y2) ≥ d2
0

1

d
2β
0

0 ≤ (x2 + y2) ≤ d2
0.

First we analyze the protocol under the retransmission crite-
rion that |h(i)|2 exceeds a given threshold τ. This requires the

channel knowledge at the node while the received data is described
by (1). We consider the correct reception model in Section 3.4.
Also, the protocol uses two different levels of power; the source
power Ps and the relay power Pr . Note that the superscript that
denotes the node index will be substituted by the coordinates (x, y)
of the point. In the notation that indicates the channel vector hi(x, y)
we will instead add the suffix i to denote the index of the level that
generated hi(x, y) as its aggregate channel response with respect
to the node in the point (x, y).

Finally, note that because we assume that the small scale fad-
ing coefficients are independent and zero mean and because the
hi(x, y) are Gaussian, this implies that the channels observed in
two different points are uncorrelated and therefore independent.

3.1. Random Network

Let S = {(xi, yi) : i = 1 . . . N} be the set of relay locations with
(x0, y0) = (0, 0) corresponding to the source. After the source
transmits with power Ps based on our model, ∀(x, y) ∈ S , the
channel coefficient are such that

K0(x, y) = Psf(x, y)

h0(x, y) ∼ CN (0, K0(x, y)Ψ) (5)

The locations of the level-1 nodes are the set

S1 = {(x, y) ∈ S : |h0(x, y)|2 ≥ τ}.
Note that S1 is a random set because {|h0(x, y)|2 ≥ τ} is

a random event. Also, as mentioned in the previous section, the
channel coefficients are independent for different (x, y). We can
easily generalize the results for level-n; Kn(x, y) and hn(x, y)
are as follows for n ≥ 1,

Kn(x, y) = Pr

�
(xi,yi)∈Sn

f(x − xi, y − yi) (6)

hn(x, y) ∼ CN (0, Kn(x, y)Ψ)

The locations of the level-n nodes are given by

Sn = {(x, y) ∈ S \
n−1�
i=1

Si : |hn−1(x, y)|2 ≥ τ}. (7)

Note that a node transmits the message only once. An impor-
tant question in the considered cooperative protocol is how do the
network parameters such as Ps, Pr, τ affect the network behavior.
To be able to answer such questions, we need to understand how
the sets S1,S2, · · · evolve as the message moves forward. For this
purpose we will consider the continuum model described next.

3.2. Continuum Model

Let � denote the region where the nodes lie. Define A := Area(�).
Let ρ = N/A be the density [nodes/unit area] of relays. In the
continuum model we are interested in the high density asymptote.
That is, the number of relay nodes N goes to infinity, while A and
the total relay power PrN are fixed. This implies that the relay
power per unit area P̄r := PrN/A = Prρ is also fixed. Let
Pn(x, y) be the probability of that the node (x, y) ∈ Sn. After the
source transmission, we have

κ0(x, y) = Psf(x, y) (8)

h0(x, y) ∼ CN (0, κ0(x, y)Ψ)

P1(x, y) = Pr{|h0(x, y)|2 ≥ τ} = Pr{(x, y) ∈ S1}
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We can derive κ1(x, y) as follows.

Lemma 1 As N→∞, K1(x, y)→κ1(x, y) in probability, where

κ1(x, y) =

��
�

P̄rP1(u, v)f(x − u, y − v)dudv.

Proof Since Pr = P̄rA/N , we can rewrite K1(x, y) as

K1(x, y) = P̄r
A

N

N�
i=1

g(x − xi, y − yi)1{(xi,yi)∈S1},

where 1{E} is the indicator function. We assume that initially the
nodes are uniformly distributed. Then, as N→∞, using the law of
large numbers and averaging over the random variable 1{(xi,yi)∈S1}
and over the nodes random location;

κ1(x, y)= AP̄r�{f(x − xi, y − yi)1{(xi,yi)∈S1}}
= AP̄r�{�{f(x − xi, y − yi)1{(xi,yi)∈S1}|(xi, yi)}}
= AP̄r�{f(x − xi, y − yi)P1(xi, yi)}.

Since the nodes are uniformly distributed,

K1(x, y)→
��

�

P̄rP1(u, v)f(x − u, y − v)dudv,

where the convergence is in probability.

Analogously, we can prove that Kn(x, y) in (7) tends to a
deterministic value. We can define the following quantities.

κn(x, y) =

��
�

P̄rPn(u, v)f(x − u, y − v)dudv

hn(x, y) ∼ CN (0, κn(x, y)Ψ)

ρn(x, y) =

n−1�
i=1

(1 − Pr{|hi(x, y)|2 < τ})

Pn+1(x, y) = Pr{|hn(x, y)|2 > τ}ρn(x, y) (9)

where ρn(x, y) is the probability that a node located (x, y) is not in
any of the Si, i = 1 . . . n−1. The set of equations (9) provides the
system of integral-difference equations whose solution specifies
the statistics of the network dynamics. The only function missing
is the term Pr{|hn(x, y)|2 > τ} which is done next.

Remark: A similar analysis can be done for systems in which
the nodes in a given level transmit in orthogonal channels (as in
TDMA or FDMA) or use a space-time code. Under these sce-
narios, the receiver achieves the maximal ratio combining gains.
The analysis of such networks with a simple deterministic channel
model is done in [7]. When each node has a separate orthogo-
nal channel, considering random signals does not complicate the
problem, because in that case |hn(x, y)|2→κn(x, y) as node den-
sity increases (the proof follows from the law of large numbers).
Hence, the analysis in [7] is also valid under such scenarios.

3.3. Calculation of Pr{|hn(x, y)|2 > τ}
The random variable t := |hn(x, y)|2 is a quadratic function of
Gaussian random variables. We can easily find the characteristic
function of t,

Φ0(jw) =
1

|I + jwκn(x, y)Ψ| =
M�

i=1

1

(1 + jwλiκn(x, y))ai

where Ψ is such that {Ψ}i,j = Ψ(i, j;∆) and Ψ(i, j;∆) is de-
fined in 3. Let λi be the i-th distinct eigenvalue of Ψ with corre-
sponding multiplicity of ai for i = 1 . . . M . Let

�M
i=1 ai := L.

Lemma 2 The probability Pr{t > τ} is

Pr{|hn(x, y)|2 > τ} =

M�
i=1

ai�
k=1

Aik

(k − 1)!
Γ(k,

τ

λiκn(x, y)
),

where Γ(a, x) =
�∞

x
e−tta−1dt. If we assume that Ψ has distinct

eigenvalues, then the above expression simplifies to

Pr{|hn(x, y)|2 > τ} =

L�
i=1

Ai1e
−τ/κn(x,y)λi . (10)

Proof We omit the proof for brevity. Note that Aik is obtained
from partial fraction expansion of Φ0(jw).

For any n, Pn(x, y) can be calculated in a similar way.

3.4. Retransmission Criterion in AWGN

In this section, we deal with the more realistic retransmission model
than in (1). That is,

rn(x, y) = C hn(x, y) + wn(x, y),

where wn(x, y) ∼ CN (0, σ2I) represent the additive white Gaus-
sian noise (AWGN) samples and C is defined as in (1). The index
n indicates the level that produced the received signal. The defini-
tion of the set of n-th level nodes (7) is replaced by

Sn = {(x, y) ∈ S\
n−1�
i=1

Si : rH
n (x, y)C(CHC)−1CHrn(x, y) ≥ τ}.

Define zn(x, y) = (CHC)−1/2CHrn(x, y), then

zn(x, y) ∼ CN (0, Kn(x, y)F + σ2I)

F = (CHC)1/2Ψ(CHC)1/2.

Under continuum approximation Kn(x, y)→κn(x, y) (Sec-
tion 3.2). Since zn(x, y) is a Gaussian random vector, the results
obtained in the previous section can be adapted here easily replac-
ing the matrix κn(x, y)Ψ with the matrix κn(x, y)F + σ2I.

4. NUMERICAL EVALUATIONS

In spite of the several simplification made, the relationships ex-
pressed among the functions Pn(x, y), ρn(x, y) and κn(x, y) are
integral-difference equations that are hard to solve analytically. We
solved them numerically and gained intuition on how the network
parameters Ps, Pr and the threshold τ affect the dynamics of the
network.

Based on the numerical solutions, we come to the following
conclusions on how the message propagation depends on the ratio
τ/P̄r . At small values of the τ/P̄r , the message propagates in the
network when initiated with sufficient source power (Ps > Ps0).
On the other hand, for large values of τ/P̄r , the message propa-
gation is bounded to a region, and dies out eventually independent
of what is the value of Ps < ∞. This is made evident by the fact
that ∀n the function Pn(x, y) → 0 for (x, y) beyond a certain
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Fig. 1. Transmissions continue.

radius from the source. Because Pn(x, y) represents the probabil-
ity that the node in point (x, y) will transmit as part of the level
n, Pn(x, y) → 0 means that the point (x, y) will never transmit.
Figures 1 and 2 shows two different regions of operation. Here,
we assume that the network lies in a disc and the source is at its
center. Due to the symmetry, we plot Pn(r) � Pn(

�
x2 + y2),

where r is the distance to the source.

We can also analyze the behavior of the network when there
exists a false alarm, i.e. a node that erroneously detects the pres-
ence of a message and retransmits it. The question is if alarm
propagates catastrophically among all relays. This case can be eas-
ily analyzed with the same model by simply replacing the source
power Ps in the initial conditions (8) by the relay power Pr . That
is, the derived dynamical system equations can be used with dif-
ferent initial condition, i.e. κ0 = Prf(x, y).

In order to prevent such false message propagation, we sug-
gest a simple power control policy. Since for small values of the
τ/P̄r , there exists a threshold for source power to initiate a flow,
the protocol can be designed such that Pr is sufficiently smaller
than Ps0.

Due to above proposition, by designing the source power and
relay power one can prevent the false alarm considerably. This will
require to increase the network density in order to keep the same
performance for the probability of detection.

5. CONCLUSION

In this paper, we analyzed the behavior of networks with coopera-
tive transmissions. The analysis is based random channel models
and the idea of continuum approximation, which models the net-
works with high node density. We believe the techniques used in
this paper can be useful in the analysis of other cooperative proto-
cols.
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