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ABSTRACT

Cooperative relays have recently been proposed and studied for
mobile ad hoc networks. It has been shown that under perfect sym-
bol synchronization, parallel relays with space-time modulation
can yield more than 10dB power savings over conventional serial
relays in a highly mobile environment. In this paper, we analyze
the effect of synchronization errors on the performance of parallel
relays, and also study several effective methods to reduce the neg-
ative impact of synch errors. Our study shows that when the synch
errors are much smaller than a symbol interval, the performance
of parallel relays deteriorates gracefully. We have also found that
well designed space-time coding techniques such as TR-STC and
ST-OFDM can be highly effective in combating large synch errors
with only marginal reduction of data rate.

1. INTRODUCTION

Cooperative relays are an important physical layer concept for mo-
bile wireless ad hoc networks to achieve higher throughput, lower
energy consumption and/or longer lifetime. A variety of cooper-
ative relays have recently been proposed and studied in a variety
of ways, e.g., [1], [2], [3]. In [1], it is shown that under perfect
synchronization, a chain of mobile parallel relays with space-time
modulation can yield more than 10dB power savings than a chain
of conventional serial relays in a highly mobile environment. Re-
lated results are also reported in [2] and [3]. A further effort on the
networking aspect of parallel relays is reported in [4].

Although achieving symbol synchronization between mobile
relays is physically feasible for narrowband single- and multi-carrier
systems (20µs narrowband symbol spans 6000m), and it is highly
desirable to achieve optimal or near optimal performance with re-
alistic complexity of the receiver, research in this area is still in its
infancy. Therefore, there is a clear need to understand the effect of
synch errors and to develop techniques to combat synch errors.

Mietzner and Hoeher [5] recently reported an analysis of the
performance of the Alamouti code in the presence of synch errors.
But their assumption about the sampling time at the receiver is
incorrect when synch errors are not multiples of a symbol inter-
val. Our recent study of the well-known symbol synchronizer and
sampler, called early-late gate, suggests that the correct assump-
tion of the sampling time at the receiver is half way between two
ideal sampling instants associated with two superimposed base-
band signals (assuming a two-transmitter system). In this paper,
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we provide an analysis of a similar system as discussed in [5] but
under the correct sampling model.

To combat synch errors, Li [6] proposed a space-time coded
transmission scheme for each relay. However, the data rate of
the scheme becomes very low when the number of transmitters
becomes large. In this paper, we show that much better transmis-
sion schemes are available to make the bit-error-rate robust against
synch errors without a major reduction of the data rate. Indeed,
with time-reversed space-time codes (TR-STC) or space-time or-
thogonal frequency division multiplexing (ST-OFDM), synchro-
nization errors between multiple mobile transmitting nodes may
become virtually non-existent at a receiving node while the data
rate is only reduced marginally.

2. PROBLEM FORMULATION AND MODELING

Consider a single section of a chain (or route) of regenerative par-
allel relays where there are multiple transmitting nodes and multi-
ple receiving nodes [1]. Each transmitting node transmits a stream
of symbols towards all receiving nodes. Each receiving node per-
forms data detection independent of other receiving nodes. The re-
ceiving nodes that have performed data detection (and error correc-
tion) successfully will then become the transmitting nodes in the
next section of the chain. The physical layer (signal processing)
operation at each receiving node essentially consists of the equal-
ization of a (virtual) multiple-input single-output (MISO) channel.
If the symbol carrier (or subcarrier) is narrow-band and all nodes
can synchronize well with each other at the symbol level, then the
space-time block codes designed for frequency-flat channels can
be readily applied to such MISO channels. With only two trans-
mitting nodes and two receiving nodes in each section, a diversity
factor equal to four per section can be achieved. More generally,
with N nodes in each transmission tier, diversity equal to N2 per
section is achievable [1].

But if the nodes cannot synchronize well with each other, per-
formance deterioration is expected. An important question now is:
how does the performance deteriorate as the synch errors increase?
Furthermore, we want to know the answer to: what are the good
solutions when the synch errors are large? These two questions
will be addressed in this paper.

Note that when there is a synch error, a receiving node re-
ceives a superposition of multiple baseband signals from multi-
ple transmitting nodes, and these baseband signals are not aligned
(synchronized) with each other. In this case, the sampler at the re-
ceiving node is bound to be confused as the optimal sampling time
of one component of the received signal is not the optimal sam-
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Fig. 1. Two baseband signals from two transmitters that arrive at
a receiver, where each symbol is pulse-shaped by a raised cosine
function.

pling time of the other(s). In [5], the authors simply assume that
the actual sampling at the receiver is at the ideal time for one of
these components. This is an incorrect assumption as we discuss
next.

Techniques for symbol synchronization and sampling at the
receiver are available in [7]. The early-late gate is a simple and
practical method that is used widely. Let τ1 be the delay of one
signal arriving at the receiver, and τ2 be the delay of the second
signal arriving at the receiver. If τ = τ1 − τ2 is a multiple of
the symbol interval T , the sampling time decided by the gate is
ideal for both signals. Without loss of generality, we now assume
0 ≤ |τ | ≤ T . We have observed that the sampling time decided by
the gate is about τ/2 ahead of the ideal time for one signal and τ/2
behind the ideal time for the other. The pulse shape p(t) we used
is the raised-cosine pulse shape given in [8]. This pulse crosses
zero at all integer multiples of T .

We now use the above sampling model to describe the sampled
signal at the receiver. As illustrated in Figure 1, it can be shown
that the sampled signal at the receiver at the sample index k is
given by:

y(k) =
2�

i=1

1�
�=−1

xi(k − �)hip((−1)i τ

2
+ �T ) + n(k)

where xi(k) is the transmitted symbol from transmitter i at time
k, hi is the (flat) channel fading factor between transmitter i and
the receiver, and i = 1, 2. Here, we have used p(t) = p(−t).

For a simple exposition of our study, we will neglect the con-
tributions from the higher-order sidelobes of p(t) beyond the first-
order sidelobes. We also define p0 = p(T − τ

2
), p1 = p(− τ

2
)

and p2 = p(−T − τ
2
). Then, the effective impulse response

of the (virtual) “two-input and one-output” discrete system is de-
scribed by �1 = [h1(0), h1(1), h1(2)]T = [h1p0, h1p1, h1p2]

T

and �2 = [h2(0), h2(1), h2(2)]T = [h2p2, h2p1, h2p0]
T . Note

that the elements in each �i are not statistically independent of
each other.

3. PERFORMANCE OF THE ALAMOUTI SYSTEM
WITH SYNCH ERRORS

Assume that two transmitting nodes use the Alamouti code to trans-
form a (common) sequence of symbols into two coded sequences
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Fig. 2. PEP of the 2 × 1 Alamouti system with the synch error τ .

for transmission. Then, every two consecutive samples received at
a node can be described by: � = X�+�where � = [y(k), y(k+
1)]T , � = [�T

1 ,�T
2 ]T , X = [X1, X2], and

X1 =

�
0 x(k) x(k + 1)

x(k) x(k + 1) 0

�
, (1)

X2 =

�
0 x∗(k + 1) −x∗(k)

x∗(k + 1) −x∗(k) 0

�
, (2)

and the term � includes both the interference and the common
noise, i.e.,

� =

�
h1(0)x(k − 1) − h2(0)x∗(k − 2)
h1(2)x(k + 2) + h2(2)x∗(k + 3)

�
+ �0 (3)

It is known that the interfering symbols x(i) are not Gaussian-
distributed. But in order to obtain an approximate performance
evaluation, we will assume them to be Gaussian with zero mean
and variance σ2

s . The common noise vector �0 is white Gaussian
with zero mean and the variance σ2. Then, the composite noise
vector � is Gaussian with zero mean and the covariance matrix
C = diag(σ2

1 , σ2
2) where σ2

1 = (|h1(0)|2 + |h2(0)|2)σ2
s + σ2

and σ2
2 = (|h1(2)|2 + |h2(2)|2)σ2

s + σ2. Note that the diagonal
elements of C are generally not equal and are also dependent on
the channel fading factors hi.

To obtain a pair-wise error probability (PEP) of an optimal
decoder, we define Pe = P (X → X̂|�) and E = X̂ − X .

Then, it can be shown that Pe = Q

��
�HEHC−1E�

2

�
where

Q(x) = 1√
2π

�∞
x

exp (− t2

2
)dt. The averaged PEP is P (X →

X̂) = E�

�
Q

��
�HEHC−1E�

2

��
.

Figure 2 shows the averaged PEP versus SNR for different
values of the synch error τ . In this figure, we assume that the
BPSK symbol constellation is used, and x̂(k) − x(k) = 0 and
x̂(k + 1) − x(k + 1) = ±2. It can be seen that when τ is much
smaller than T , the performance degradation is not obvious. But
as τ becomes closer to T , the degradation becomes large.

4. SPACE-TIME CODING TO COMBAT SYNCH ERRORS

As discussed previously, the synch errors make a frequency-flat
system frequency-selective. Therefore, an effective approach to
combating synch errors is to use space-time codes designed for
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frequency-selective channels. However, the samples of the chan-
nel impulse response caused by synch errors are not statistically
independent, hence synch errors do not introduce additional multi-
path diversity.

4.1. Time-reverse space-time code (TR-STC)

In this section, we consider the time-reverse space-time codes [9].
In this case, the two neighboring blocks of symbols transmitted
from transmitter 1 are
[0, x(0), x(1), ..., x(N − 1), 0, 0,−x(N), ... − x(2N − 1), 0].

The blocks transmitted from transmitter 2 are the time-reversed
version of that from transmitter 1 but with complex conjugation,
i.e.,
[0, x∗(2N − 1), ...x∗(N), 0, 0, x∗(N − 1), ..., x∗(0)].

Here, the 0’s are added to get rid of the interference between blocks.
When the length of the blocks is large enough, the reduction in
the data rate is negligible. The samples received at a node from
t = 0 to t = N + 3 can be expressed as: � = X� + �0

where � = [h1(2), h1(1), h1(0), h2(2), h2(1), h2(0)]T , X =�
X11 X12

X21 X22

�
, and

X11 =

�
����������

x(0) 0 0
x(1) x(0) 0
x(2) x(1) x(0)

...
...

...
x(N − 1) x(N − 2) x(N − 3)

0 x(N − 1) x(N − 2)
0 0 x(N − 1)

�
����������

and other Xi,j

are defined similarly from the corresponding blocks of symbols.
Following a similar procedure as used before, we have

P (X → X̂) = E�

�
Q

�	
�HEHE�

2σ2





where E = X̂ − X =

�
E11 E12

E21 E22

�
. It can be shown that X

is block-wise orthogonal. Furthermore, we can show that EHE =
diag(T, T ) where T = EH

11E11 +EH
21E21 = EH

12E12 +EH
22E22.

Define� = [�T
1 ,�T

2 ]T , �1 = [p2, p1, p0]
T , and �2 = [p0, p1, p2]

T .
Then, we have

�
HEHE� = �

H
1 T�1 + �

H
2 T�2

= |h1|2�H
1 T�1 + |h2|2�H

2 T�2

= (|h1|2 + |h2|2)�H
1 T�1 (4)

Here, |hi|2 is exponentially distributed. Using an alternative form
of the Q function given in [10], we have

PEP =

� ∞

0

� ∞

0

1

π

� π
2

0

exp(−�HEHE�

4σ2 sin2 θ
)dθ

exp(−x1) exp (−x2)dx1dx2

=
1

π

� π
2

0

1

(1 + c
sin2 θ

)2
dθ

=
1

4

�
�2 −

	
1 + 1

c
c(3 + 2c)

(1 + c)2

�
� (5)

where c =
�H
1 T�1
4σ2 is proportional to SNR. The Taylor expan-

sion of the PEP at high SNR shows that the PEP is proportional to
1

SNR2 . Thus the diversity of the system is two.
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Fig. 3. PEP for a two-transmitter and one-receiver TR-STC system
with the synch error τ . N = 20. If τ is increased by a multiple of
T , the PEP remains the same provided a proper number of zeros
are padded between blocks.

The PEP for the TR-STC system (with N = 20) is illustrated
in Figure 3. It can be seen that by using TR-STC, the performance
can be improved significantly. The degradation in performance is
very small even when τ is large.

The use of TR-STC for two transmitting relays can be eas-
ily extended to multiple transmitting relays using the general Or-
thogonal Space-Time Code (OSTC) [11]. That is, each symbol
in OSTC is replaced by a block of symbols in TR-STC, and the
conjugate of a symbol in OSTC corresponds to conjugation and
time-reverse of a block of symbols in TR-STC.

4.2. Space-Time OFDM (ST-OFDM)

An alternative to the TR-STC code is the ST-OFDM code [9]. A
major advantage of the ST-OFDM code is that a frequency selec-
tive channel is converted by ST-OFDM into multiple frequency
flat channels. With a proper outer code applied together with ST-
OFDM as an inner code, the full diversity of a frequency selective
channel can be exploited as well. The detector for a ST-OFDM
system is generally simpler than that for a TR-STC system.

At the receiver of this ST-OFDM system, the received samples
at k-th subcarrier in blocks 1 and 2 (after the FFT) can be described
as follows:�

y1(k)
y∗
2(k)

�
=

�
H1(k) −H2(k)
H∗

2 (k) H∗
1 (k)

� �
x1(k)
x∗

2(k)

�
+

�
n1(k)
n∗

2(k)

�
where Hi(k) =

�2
l=0 hi(l)e

−j 2π
N

kl. The PEP for the optimal
detection of the corresponding two blocks of symbols (without an
outer code) can be shown to be

PEP = E�


�Q


�
����N−1�

k=0

�(k)HH(k)HH(k)�(�)

2σ2

�
�
�
�

= E�

�
Q

��
|h1|2c1 + |h2|2c2

2σ2

��
(6)

where ci =
�N−1

k=0 ‖�(k)‖2�2
l=0 |pi(l)e

−j 2π
N

kl|2, and �(k) =
�(k)− �̂(k). Due to the special structure of �i, we have c1 = c2,
then

PEP =
1

4

�
�2 −

	
1 + 1

c1
c1(3 + 2c1)

(1 + c1)2

�
� (7)
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Fig. 4. PEP for a two-transmitter and one-receiver ST-OFDM sys-
tem with the synch error τ . N = 20. If τ is increased by a multiple
of T , the PEP remains the same provided a proper number of zeros
are padded between blocks.

It can be seen from Figure 4 and Figure 3 that the performance
difference between TR-STC and ST-OFDM is very small. Both of
them are robust to synch errors. However, by using ST-OFDM, the
ML detector can be decomposed into N independent ML detectors
of much smaller and frequency-flat channels.

5. EXTENSION TO VERY LARGE SYNCH ERRORS

Until now, we have assumed that the timing error is 0 < τ < T .
To consider a more general situation, let the timing error be D =
dT + τ , where d is an integer and 0 < τ < T .

Now the effect of D can be divided into two parts, one is from
the fractional part τ , which will effectively create ISI channels that
we have analyzed in the previous sections. The other part is from
the multiple of T , which will cause a d-symbol shift between the
two transmitted sequences. In the following, we discuss the effect
of the second part.

In the Alamouti system, two neighboring samples at the re-
ceiver are used to perform symbol detection. Due to the d-symbol
shift, the inter-symbol interference remains strong. Thus, the per-
formance degrades significantly when d increases.

In the TR-STC system, if we insert d zeros at the end of the
first transmitted block, and d zeros at the beginning of the second
transmitted block, then we cancel the interference between blocks
and the code matrix X remains the same. Hence, the same per-
formance as given by (5) can be achieved. A major cost here is a
reduction of the data rate. However, if d � N , the rate deduction
can be ignored.

In the ST-OFDM system, since the shift in time domain cor-
responds to a phase change in frequency domain, ST-OFDM still
works as there is only a phase shift in the channel. Namely, the
received samples become

�
y1(k)
y∗
2(k)

�
=

�
H1(k) −Ĥ2(k)

Ĥ∗
2 (k) H∗

1 (k)

� �
x1(k)
x∗

2(k)

�
+

�
n1(k)
n∗

2(k)

�

where Ĥ2(k) = H2(k) exp (−j2π kd
N

). Orthogonality still holds
and thus the performance is the same as that given by (7). The
additional cost here is that we need to add d more cyclic prefix
symbols to each block, which reduces data rate.

6. CONCLUSION

We have analyzed the effects of synchronization errors on paral-
lel relays with space-time modulation. Our results show that al-
though the performance of parallel relays deteriorates gracefully
when synchronization errors are small, the performance degrada-
tion is large when synchronization errors are large. However, by
using time-reversed space-time codes or space-time OFDM, the
performance of parallel relays remains robust to synchronization
errors. A major cost is a data rate reduction which can be made
small if the symbol block size is much longer than the timing er-
ror τ . Another possible cost is the longer delay, on the order of
the block length, which may be negligible depending on the upper
bound on synch errors.
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