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ABSTRACT

We consider the design of optimum discrete multitone (DMT)
systems supporting multiple services with potentially differing qual-
ity of service (QoS) requirements. With the konwledge of channel
and colored interference at the receiver input of the DMT system,
our goal is to minimize the transmitted power while holding QoS
specifications for different users. With redundancy in the form of
cyclic prefix, optimum bit loading scheme, subchannel assigning
scheme and transceiver design are found for DMT system. As
with our previous study involving zero padding redundancy, the
key conclusions are: (i) The optimum transceiver is unaffected by
changing service characteristics, and depends only on the chan-
nel and interference conditions. (ii) The QoS requirements, the
number of users and the number of subchannels assigned to the
different users only affect bitloading and subchannel assignment.

1. INTRODUCTION

Discrete Multi-tone (DMT) modulation has proved effective in re-
liable high rate data transmission over frequency selective commu-
nication channels. It has been established as standards in various
applications, like ADSL, HDSL for wireline communications [1],
and IEEE 802.11a for fixed wireless communications in the form
of Orthogonal Frequency Division Multiplexing (OFDM). DMT
systems sinultaneously support multiple service flows as voice,
data and video. Each of these streams in general has different
Quality of Service (QoS) requirements as quantified by such pa-
rameters as bit rates and symbol eror rates (SER). To maintain high
levels of performance, appropriate allocation of bandwidth and
rates among the various services becomes an important problem.
In particular, in such wireline applications as ADSL and VDSL,
where channel conditions do not undergo substantial changes af-
ter the initial setup, these channel conditions are fedback to the
transmitter, and used to achieve optimum bit loading in a man-
ner to be specified in the sequel. Recently several authors such
as [7], [2], [8] have sought to further improve performance by us-
ing channel conditions to optimize the transmitter and receiver as
well, although only in a single user context. Given the prolifera-
tion of multiflow systems expected in the future, we consider here
transceiver optimization, together with optimum bitloading in a
multiuser context.

In our previous work, [5], we had considered transceiver opti-
mization assuming a zero padding redundancy and general linear
redundancy removal. This paper extends the results of [5] to the
case where the redundancy used is a cyclic prefix redundancy. This
also thus extends the result of [2] which considers the optimization
with cyclic prefix redundancy, in the single user context.
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Figure 1 depicts a DMT system. M -parallel incoming data
streams are passed through M -point block transform G0, followed
by a parallel-to-serial conversion. We assume that the channel and
the equalizer are known, and that the equalizer/channel combina-
tion is FIR of length κ. If the channel noise is white, then the
knowledge of the equalizer implies the knowledge of the colored
noise statistics at the equalizer output. Throughout we assume that
the second order statistics of effective disturbance at the equal-
izer output is available. A cyclic prefix redundancy of length κ is
added to the channel input to infuse resistance to channel induced
intersymbol interference (ISI). At the receiver the redundancy is
removed, followed by a serial-to-parallel conversion, then another
M -point block transform S0. In traditional OFDM, the input trans-
form is Inverse Discrete Fourier Transform (IDFT) operation, and
the output transform is DFT operation.

We consider in this paper orthogonal DMT system with cyclic
prefix. r service flows are supported, of which k-th flow is as-
signed nk subchannels, requires bit rate of tk and sustain an SER
of ηk. As the zero-padding counterpart [4] [5], for cyclic prefix
DMT system considered here, our goal is to choose proper trans-
form matrices G0 and S0, to assign subchannels to each service
flow, and to allocate bit rates to each subchannel in an optimum
way such that the QoS specifications are achieved and total trans-
mitted power is minimized. The optimization problem differs from
that in [5] as under zero padding redundancy the transmitted power
equals the power at the output of the P/S block in figure 1. In the
cyclic prefix case, however, the actual transmitted power is greater.

The major conclusions of this paper are as follows. Just as
in the case of zero padding redundancy, the optimum transceiver
depends only on the knowledge of the channel and equalizer, and
does not depend on either the number of flows or the QoS require-
ments of each flow. The latter only affect bit loading an subchan-
nel assignment. In such wireline applications as DSL, ADSL or
VDSL, once the initial connection has been established, the chan-
nel conditions do not change substantially, and at most suffer very
slow drift. Thus once the estimates of the channel conditions have
been fed back to the transmitter after the initial setup, for all prac-
tical purposes the transceiver does not have to be changed during
the life of a given connection. Only bitloading and subchannel se-
lection will be affected as the number of services and their QoS
requirements change.

2. PROBLEM FORMULATION

Assume there are M data streams x0(n), x1(n), . . . , xM−1(n)
being fed into the DMT system that supports r users, k-th user
takes nk data streams for its transmission. Assume that that with
the subchannels indexed from {1, · · · , M}, Ik indexes the sub-
channels assigned to the k-th user, and that bj is the number of
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bits/symbol assigned to the j-th subchannel. Then the bit rate con-
straint on the k-th user translates to∑

j∈Ik

bj = tk, (2.1)

where tk is a specified integer. For large bit per symbol constella-
tion schemes, the ouput SNR required to achieve an SER of η is
approximately σ2

x̂/σ2
e = d2ζb where σ2

x̂ and σ2
e are the signal and

noise power respectively, [6], the constant d is determined by the
modulation scheme used and the desired SER, η, and ζ depends
on the modulation scheme employed (in the case of PAM, ζ = 2)
and b is the number bits per symbol.
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Fig. 1. DMT communication system.

The equalized FIR channel is assumed known for transceiver
design purpose, with length κ, it can be specified as

C(z) = c0 + c1z
−1 + . . . + cκz−κ (2.2)

Cyclic prefixing DMT requires that block vector length increase at
least κ so as to be immune to inter-block interence (IBI). Define,
N = M + κ. Call the N × N blocked version of C(z), C(z).

C(z) =

⎡
⎢⎢⎢⎣

c0 z−1cN−1 z−1cN−2 . . . z−1c1

c1 c0 z−1cN−1 . . . z−1c1

...
...

...
...

...
cN−1 cN−2 . . . c1 c0

⎤
⎥⎥⎥⎦
(2.3)

with ci = 0, for i ≥ κ. With redundancy insertion and removal
matrices expressed by

ICP =

[
0 Iκ

IM

]
RCP =

[
0 IM

]
, (2.4)

it can be easily verified that the composite of ICP , C(z) and RCP

is an M × M constant matrix, denoted by CL. We assume that
CL is nonsingular.

We assume ISI free transmission or the perfect reconstruction
(PR) condition: x̂(n) = x(n) for all n, or

S0CLG0 = I. (2.5)

Under (2.5) σ2
xj

= σ2
x̂j

. Thus the if j ∈ Ik then the SER of ηk

required by the k-th flow is met if

σ2
xj

= dk2ζkbj σ2
ej

. (2.6)

Here σ2
ej

is the noise power at the output of the j-th subchannel,
and dk, ζk are determined by ηk and the modulation scheme em-
ployed by the k-th flow.

Now observe that the cyclic prefix redundancy ensures that the
total transmitted power is in fact

PB =

M∑
j=1

mjσ
2
xj

[GH
0 G0]jj

where mj = 1 if j ∈ {1, · · · , M − κ} and mj = 2 otherwise.
Thus total transmitted power is given by

PB =
r∑

k=1

∑
j∈Ik

mjσ
2
xj

[GH
0 G0]jj (2.7)

Denote Ru to be the known autocorrelation matrix of the N×1
blocked vector u(n), of the noise at the equalizer output. We as-
sume that Ru is known. Similarly Rw and Rv are the autocorrela-
tion matrices of w(n), the M×1 blocked noise vector at the output
of RCP , and v(n), M × 1 blocked noise vector S0, respectively.
We have the relations

Rv = S0RwSH
0 , Rw = RCP RuRH

CP (2.8)

Then to meet the SER requirement the total transmission power is
given by

PB =

r∑
k=1

∑
j∈Ik

dk2ζkbj mj [G
H
0 G0]jj [S0RwSH

0 ]jj . (2.9)

Thus, the optimization problem becomes: Given positive nk, ηk,
tk, M×M positive definite Hermitian Rw, minimize (2.9) subject
to (2.1), and (2.5), by selecting bj (bit loading) Ik (subchannel
assignment), and M × M nonsingular matrices S0 and G0.

3. OPTIMUM SELECTIONS

First we denote

T0 = S0CL (3.10)

R̂w = C−1
L RwC−H

L , (3.11)

then

GH
0 G0 = T−H

0 T−1
0 (3.12)

S0RwSH
0 = T0R̂wT H

0 (3.13)

Consequently,

PB =

r∑
k=1

∑
j∈Ik

dk2ζkbj mj [T
−H
0 T−1

0 ]jj [T0R̂wT H
0 ]jj (3.14)

This objective function can be rewritten as

J(T0) =

M∑
i=1

αi(e
T
i T0R̂wT H

0 )(eT
i T−H

0 T−1
0 ei) (3.15)

where αi = dk2ζkbj mi,k > 0, i ∈ Ik. Then we have the follow-
ing characterization of a minimizing T0.
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Theorem 3.1 Let the SVD of M ×M , positive definite Hermitian
R̂w be

R̂w = UΛ2UH (3.16)

with Λ real, diagonal and U unitary. Then for arbitrary αi > 0,
for some unitary V , (3.15) is minimized by

T0 = V Λ−1/2UH (3.17)

and (3.15) becomes

J(T0) =

M∑
i=1

αi

[
V ΛV H

]2

ii
(3.18)

Using the Arithmetic Mean-Geometric Mean (AM-GM) in-
equality which states that the Arithmetic Mean of a set of posi-
tive numbers is greater than or equal to its Geometric Mean, with
equality holding if and only if all numbers are equal, we have

PB ≥ PBOPT

=
r∑

k=1

dknk

⎡
⎣2ζktk

∏
j∈Ik

mj [T
−H
0 T−1

0 ]jj [T0R̂wT H
0 ]jj

⎤
⎦

1
nk

(3.19)

with equality holding if and only if for all k and i, j ∈ Ik

2ζkbj mj [T
−H
0 T−1

0 ]jj [T0R̂wT H
0 ]jj

= 2ζkbi,kmi,k[T−H
0 T−1

0 ]ii[T0R̂wT H
0 ]ii (3.20)

This in turn provides the optimum bit loading rule:

bj =
tk

nk

− 1

ζk
log2

⎡
⎣ mj [T

−H
0 T−1

0 ]jj [T0R̂wT H
0 ]jj

(
∏

j∈Ik
mj [T

−H
0 T−1

0 ]jj [T0R̂wT H
0 ]jj)

1
nk

⎤
⎦ (3.21)

Thus, to minimize PB , it is sufficient to find unitary matrix V
that minimizes

r∑
k=1

dknk2ζktk [
∏

j∈Ik

mj [V ΛV H ]2jj ]
1

nk (3.22)

Denote βk = dknk2ζktk/nk , aj = [V ΛV H ]jj , then we need
to minimize the following objective function

JM (a0, . . . , aM−1) =
r∑

k=1

βk

∏
j∈Ik

m
1

nk
j a

2
nk
j . (3.23)

Notice that the expression in (3.23) is independent of the ac-
tual selection of bj . This conceptual separation indicates that T0

can be found without determining bj .
Now two factors affect the value of JM . First of course the

choice of aj . Even given aj , JM the choice of Ik, i.e. the way in
which the aj are arranged between the products affects the value
of JM . Given a choice of aj call the choice of Ik, that leads to the
smallest JM , as representing an optimum arrangment.

Before proceeding, we need a few results from the theory of
majorization, [3].

Definition 3.1 Consider two sequences x = {xi}n
i=1 and y =

{yi}n
i=1 with xi ≥ xi+1 and yi ≥ yi+1. Then we say that y

majorizes x, denoted as x ≺ y, if
∑k

i=1 xi ≤ ∑k
i=1 yi holds

for 1 ≤ k ≤ n, with equality at k = n. We say that y weakly
supermajorizes x, denoted x ≺W y, if

∑n
i=j xi ≥ ∑n

i=j yi, 1 ≤
j ≤ n.

Fact 3.1 If H is an n×n Hermitian matrix with diagonal elements
h = {hi}n

i=1 and eigenvalues λ = {λi}n
i=1, then h ≺ λ.

Definition 3.2 A real valued function φ(z) = φ(z1, . . . , zn) de-
fined on a set A ⊂ Rn is said to be Schur concave on A if
x ≺ y on A ⇒ φ(x) ≥ φ(y). φ is strictly Schur concave on
A if strict inequality φ(x) > φ(y) holds when x is not a permuta-
tion of y. Further if x ≺W y then also φ(x) > φ(y).

We will now state a theorem that results in a test for strict
Schur concavity. We denote φ(k)(z) = ∂φ(z)

∂zk
.

Lemma 3.1 Let φ(z) be a scalar real valued function defined and
continuous on D = {(z1, . . . , zn) : z1 ≥ . . . ≥ zn}, and twice
differentiable on the interior of D. Then φ(z) is Schur concave on
D if φ(k)(z) is increasing in k.

The following Lemma together with Lemma 3.1 proves that
JM is in fact Schur concave under optimal arrangements.

Lemma 3.2 Consider for integers p, q ≥ 2,

f = (α

p−1∏
k=0

mkak)2/p + (β

q−1∏
l=0

mlhl)
2/q

with α, β, ak, hl > 0. Suppose for some i, j

ai > hj and
∂f

∂ai
>

∂f

∂hj
. (3.24)

Then

g = (α

p−1∏
k=0,k �=i

ak.hj

p−1∏
k=0

mk)2/p

+ (β

q−1∏
k=0,k �=j

hk.ai

q−1∏
k=0

mk)2/q < f. (3.25)

Further if ai > ai+1, then ∂f/∂ai < ∂f/∂ai+1, if hi > hi+1,
then ∂f/∂hi < ∂f/∂hi+1.

The importance of concluding that JM (a0, . . . , aM−1) to be
Schur concave resides in the simple and explicit solution of T0 [4],
i.e., for a suitable permutation matrix P ,

T0 = PUH (3.26)

minimizes JM (a0, . . . , aM−1).
In multiuser scenario even with uneven subchannel distribu-

tion, we can show the optimum transceiver obtained above remains
the same as that in single user case of [2]. Indeed the optimum re-
ceiver is

S0 = PUHC−1
L = (PUHC−1

L R1/2
w )R−1/2

w (3.27)
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and using (3.11), (3.16), we have

(PUHC−1
L R1/2

w )(R1/2
w C−H

L C−1
L R1/2

w )(PUHC−1
L R1/2

w )H

= PUHUΛ2UHUΛ2UHUP H = PΛ4P H (3.28)

which is a diagonal matrix.
Indeed G0 and S0 only require the knowledge of the chan-

nel and Ru. Only the permutation matrix is affected by QoS re-
quirements and used only to distribute the subchannels between
the users.

4. SIMULATION RESULTS

We compare the transmitted power of the DFT-based DMT sys-
tem and optimum transceiver DMT system with optimum bit al-
location. For DFT-based DMT system, each user has its evenly
distributed bits/symbols among its subchannels. We assume the
equalized channel to be C(z) = 1 + 0.5z−1, and u(n) the noise
at the equalizwer output has power spectral density shown in fig-
ure 2. Each subchannel employs PAM constellation. Above 13 dB
improvement is observed over conventional DMT.
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Fig. 2. Comparison of transmit power levels.

5. CONCLUSIONS

In this paper, we have presented optimum DMT transceiver design
and bit loading scheme for minimizing the transmitted power, with
different users having different QoS requirements. Unlike the sim-
ilar problem for DMT system with zero padding, whose optimum

input and out put transforms are unitary, in this case these trans-
forms need no be unitary. An attractive feature of the solution is
that the optimum transceiver depends only on the knowledge of
the channel and equalizer, and does not depend on either the num-
ber of flows or the QoS requirements of each flow. The latter only
affect bit loading an subchannel assignment.
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