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ABSTRACT

We formulate the joint design of interpolation filter and fre-
quency equalizer in DMT systems as the problem for min-
imization of the mean square error between the input data
symbol and its output estimate. Then an iterative algorithm
is proposed for solution. Each iteration requires only solv-
ing two quadratic minimizations; the algorithm also ensures
convergence. Simulations for VDSL applications demon-
strate that an increment in transmission rate can be achieved
compared with the conventional design of the interpolation
filter and frequency equalizer separately.

1. INTRODUCTION

In xDSL communications employing the discrete multitone
(DMT) modulation, as noted in [1], the receiver design for
xDSL applications commonly uses an interpolation filter
to compensate for the timing offset and a fixed frequency
equalizer (FEQ) to equalize the channel distortions. The in-
terpolation filter and the FEQ are conventionally designed
separately [2, 3]. Recently, the interpolation filter and the
FEQ are jointly designed in [4] based on the max-min crite-
rion, its approach, however, fails to provide a simple algo-
rithm for solution and only the brute-force exhaustive search-
ing is adopted. It further constrains the interpolation filter to
be the type of Kaiser window filter and ignores the noise ef-
fect in order to reduce the realization complexity; these con-
straints, however, may degrade the receiver performance. In
this paper, instead of using the max-min criterion, the min-
imum mean square error is used to formulate the joint de-
sign of the interpolation filter and the FEQ. Then a simple
iterative algorithm is presented for solution. Each iteration
requires only to solve two quadratic minimizing problems;
the algorithm also ensures convergence. Simulations for
VDSL [5] applications demonstrate that for short channel
a substantial increment in transmission rate can be achieved
compared with the conventional design.
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2. PROBLEM FORMULATION
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Fig. 1. The block diagram of a DMT system

The block diagram of a DMT system is shown in Fig. 1.
Let N , an even integer, denote the number of carriers in
the DMT system. The transmitted data X0, . . . , XN−1 with
XN/2 = 0 and Xk = X∗

N−k for k = 1, . . . , N/2 − 1
where the superscript * denotes the complex conjugation,
are modulated by the IFFT, supplemented by cyclic pre-
fix/suffix extensions and windowing, and finally converted
by the digital-to-analog (D/A) converter into analog signals
through the channel; the receiver, including the analog-to-
digital (A/D) converter, the timing recovery block, the FFT,
the FEQ, and the decision detector, identifies the transmitted
data. The timing recovery mainly consists of a timing offset
estimator, an interpolation filter, and a downsampling con-
verter. We assume that the timing offset estimator obtains a
correct estimation; our purpose is to jointly design the inter-
polation filter and the FEQ such that the mean-square error
(MSE) between the transmitted data Xk and the FEQ output
X̂k averaged over k = 0, . . . , N/2 − 1 is minimized. The
followings develop the formulation of the criterion in terms
of the interpolation filter and FEQ parameters.
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2.1. Received Data Sample

Assume that the frame synchronization has been achieved
such that the redundant cyclic prefix/suffix extensions have
been removed. Then, the received signal can be approxi-
mately represented [4] by the following equation,

r(t) =
N/2−1∑

k=1−N/2

XkGkej(2πk/N)(t/T ) + n(t), (1)

for 0 ≤ t ≤ (N−1)T where Gk is the channel frequency re-
sponse to signal ej(2πk/N)t, n(t) is an added white Gaussian
noise, and T denotes the input sample period. Denote Ts

as the sampling period of the A/D converter; it is given by
Ts = T/q where q, an integer, is called as the oversampling
factor which is commonly 1 or 2 for xDSL applications.
The sample time for the m-th data is mTs −µTs where µ is
the normalized timing offset, thus −0.5 ≤ µ < 0.5. Denote
r[m] = r((m − µ)Ts), then using (1), we have

r[m] =
N/2−1∑

k=1−N/2

XkGkej(2πk/qN)(m−µ) + n[m]. (2)

Hence, in one symbol period we obtain qN samples.

2.2. Interpolation, Downsampling, and FEQ

The interpolation filter is used to compensate for the timing
offset µT ; it is commonly realized by an FIR filter [6, 7]
with its coefficients varying with µ. Assume the FIR inter-
polation filter is of degree M with its coefficients denoted
by hµ[l], l = 0, . . . , M, then its output r̃[m], excited by the
received data r[m] which is replaced by (2), is given by

r̃[m] =
N/2−1∑

k=1−N/2

XkGkHµ,kej(2πk/qN)(m−µ)+v[m], (3)

where v[m] =
∑M

l=0 n[m − l]hµ[l] and Hµ,k =
∑M

l=0

hµ[l]e−j(2π/qN)kl.
The interpolation filter coefficient is commonly char-

acterized by a polynomial of µ such that the well-known
Farrow structure [8] can be employed for efficient realiza-
tion. Assume this polynomial is of degree P, then hµ[l] =∑P

p=0 al,pµ
p. Denote ωk = 2πk/(qN), thus Hµ,k, the fre-

quency response of the interpolation filter at ωk, can be ex-
pressed in a compact form as

Hµ,k =
M∑

m=0

P∑
p=0

am,pµ
pe−jωkm

= aT (µ ⊗ ωk) (4)

where the superscript T denotes the transposition, ⊗ rep-
resents the right Kronecker product, a = [a0,0, · · · , aM,0,

a0,1, · · · , aM,1, · · · , a0,P , · · · , aM,P ]T , µ = [µ0, µ1 · · · ,
µP ]T , and ωk = [1, e−jωk , · · · , e−jMωk ]T .

The output, after down-sampling by q, is obtained di-
rectly by r̂[m] = r̃[qm],

r̂[m] =
(N/2)−1∑
k=1−N/2

XkGkHµ,kejωk(qm−µ) + v[qm] (5)

for 0 ≤ m ≤ N − 1. These data r̂[m] are transformed by
FFT, yielding

Yk = XkGkHµ,ke−jωkµ + Vk, k = 0, . . . , N − 1 (6)

Multiplying Yk by the FEQ Qk and using (4), we obtain the
Xk estimate, X̂k = YkQk,

X̂k = XkGkHµ,ke−jωkµQk + VkQk

= XkGkQk[aT (µ ⊗ ωk)]e−jωkµ + VkQk (7)

2.3. The Average MSE Criterion

The average of the mean-square error between the transmit-
ted data and estimated output for the N/2 tones is used as
the criterion J , given by

J =
N/2−1∑

k=0

CkE[|Xk − X̂k|2] (8)

where E[·] denotes the expectation and Ck the weighting
factor for the kth tone. Substituting (7) into (8), rearrang-
ing, we obtain J as a function of the interpolation filter co-
efficients a and FEQ components Qk, k = 0, . . . , N/2− 1,

J =
N/2−1∑

k=0

CkSxk
E[|1 − aT (µ ⊗ ωk)e−jωkµGkQk|2]

+
N/2−1∑

k=0

CkSnk
|Qk|2E[|aT (µ ⊗ ωk)|2] (9)

where Sxk
= E[|Xk|2] and Snk

is the power spectrum den-
sity of noise sample n[k] at ωk. Note that the above deriva-
tion is valid only if the input noise n(t) is bandlimited in
[−1/(2T ), 1/(2T )] when oversampling q ≥ 2 is enabled;
this assumption is reasonable because the antialiasing filter
is commonly employed before the A/D converter.

The criterion J (9) is obviously a nonlinear function of
both the FEQ components Qk, k = 0, . . . , N/2 − 1 and
the interpolation filter coefficients a. Conventional nonlin-
ear optimization approaches may be applied for solution but
they are often complicated. In the following section, a sim-
ple iterative algorithm is presented for solution.
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3. ACM ALGORITHM FOR SOLUTION

Investigating (9) closely we observe that both the FEQ com-
ponents and the interpolation filter contribute, separately,
to the cost function in a quadratic form. That is, J is a
quadratic function of the FEQ components if the interpola-
tion filter coefficients a are fixed and vice versa. Hence, the
algorithm of alternating coordinates minimization (ACM)
[9] is an effective way for solution.

The ACM algorithm for solving the minimization of (9)
involves iterations of two alternating optimizing operations:
in the l-th iteration, the first optimizing operation solves a(l)

to minimize (9) given a fixed Qk = Q
(l−1)
k for all k; the sec-

ond optimizing operation solves Q
(l)
k to minimize (9) given

a fixed a = a(l). The algorithm may start either with the
first optimizing operation given initial FEQ Q

(0)
k or with the

second optimizing operation given the initial interpolation
filter a(0), then the two optimizing operations continue al-
ternatingly until the convergence of a(l) and Q

(l)
k . Since the

two operations all find a(l) or Q
(l)
k , k = 0, . . . , N/2 − 1

to minimize J , the obtained MSE J of each iteration is
thus guaranteed non-increasing. Also J is non-negative and
hence bounded from below, the algorithm, therefore, en-
sures convergence. Detailed derivations of two optimizing
operations are described below.

3.1. First optimizing operation: solve a(l) given Qk =
Q

(l−1)
k , k = 0, . . . , N/2 − 1.

Since Qk’s are fixed, J (9) is a quadratic function of inter-
polation filter coefficients a. Taking the gradient of J with
respect to a and setting it to a zero vector yields the unique
solution for a,

a(l) = {
N/2−1∑

k=0

Ck|Qk|2(Sxk
|Gk|2 + Snk

)Re[Rk]}−1

{
N/2−1∑

k=0

CkSxk
Re[GkQkpk]} (10)

where Re[z] denotes the real part of z, and the matrix Rk

and vector pk are

Rk = E[(µ ⊗ ωk)(µ × ωk)H ]
= E[µµH ] ⊗ (ωkωH

k ) (11)

pk = E[µe−jωkµ] ⊗ ωk (12)

with the superscript H standing for the transpose conjugate
operation. Since the probability density function of µ is
conventionally assumed to be uniform, closed-form formu-
las for evaluating E[µe−jωkµ] and E[µµH ] exist and can be
obtained from the standard mathematical tables; hence the
solution (10) can be simply realized.

3.2. Second optimizing operation: solve Q
(l)
k , k = 0,

. . . , N/2 − 1, given a = a(l).

When a = a(l), J (9) is also a simple quadratic function
of Qk and its solution for minimizing J can be similarly
derived,

Q
(l)
k =

Sxk
G∗

kpH
k a

(Sxk
|Gk|2 + Snk

)aT Rka
, (13)

for k = 0, . . . , N/2 − 1. Thus its realization is also simple.
Note that the ACM algorithm, like most nonlinear op-

timization algorithms, may converge to a local minimum.
Therefore, a sensible initial estimate may be required. One
good initial estimate of the interpolation filter is the La-
grange interpolator [6]; another good initial FEQ is Q

(0)
k =

Sxk
G∗

k /(Sxk
|Gk|2 + Snk

) for all k, which is the FEQ de-
signed for minimizing J when the interpolation filter per-
fectly compensates for the time delay.

4. DESIGN FOR VDSL APPLICATIONS

The proposed method is used to design the interpolation fil-
ter and the FEQ for VDSL applications. Its performance is
then compared with that of using the fixed cubic Lagrange
interpolator [6] and the FEQ designed for minimizing J. In
VDSL systems [5], the working frequencies are divided into
four subbands; two of them are used for downstream and the
other two for upstream transmissions. We simulate for the
downstream connection with N = 8192, baud-rate sam-
pling q = 1, and M = 3, P = 3 for the interpolation
filter. The tone indexes in the two downstream bands are
k ∈ [33, 880] and k ∈ [1207, 1970]. The frequencies of
the amateur radio bands and AM radios are not employed;
thus the total number of used tones is 1412. The simulation
channels use the VDSL1 loop, a 24-gauge twisted pair, of
short (1500ft), medium (3000ft), or long-range (4500ft) val-
ues. The noise considers the white, the near-end and far-end
cross-talk noises, while the signal power of each tone, fol-
lowing the cabinet deployment scenario defined in [5], is all
identical. The weighting factor is uniform; that is C(k) =
1/1412 for the employed tone k, otherwise C(k) = 0. The
algorithm starts with an initial cubic Lagrange interpolation
filter and stops when |J (l)−J (l−1)|/J (l−1) is less than 10−4

for short and medium channels, and 10−5 for long channel
where J (l) is the cost J evaluated after the l-th iteration.

The cost J (l) in dB versus iteration for short channel is
shown in Fig. 2. As shown, J (l) is, as expected, decreas-
ing with each iteration. To quantify the improvement of
transmission rate, the noise power of each tone is evaluated
as E[|Xk − X̂k|2] and the signal-to-noise ratio of the k-th
tone (SNRk) as Sxk

/E[|Xk − X̂k|2], then the allowed bit
number of each tone for transmission can be approximately
obtained by bk = log2(1 + SNRk/Γ)/2 where Γ = 9.55
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for the bit-error-rate less than 10−7. Hence, the sum of bk

multiplied by the transmission rate of 4 kbps of each tone
is the total transmission rate. Fig. 3 shows the obtained
SNRk for the short channel of the two design examples.
The figure reflects the property that the cubic Lagrange in-
terpolation filter compensates for the timing offset of the
signal nearly perfect in the low-frequency band but poor
in the high-frequency band; the proposed joint design im-
proves the performance in the high-frequency band at the
cost of slight performance degradation in the low-frequency
band. The transmission rate and its increment for the three
channels are listed in Table 1 in which the proposed method
gains an increase of 8 Mbps for short channel but nearly
without any gain for medium and long channels. The rea-
son is that the channel responses in the high-frequency band
attenuate more quickly than in the low-frequency band as
the channel length increases; this quick attenuation renders
the improvement of the designed interpolator in the high-
frequency band ineffective. This shortage may be improved
by the use of the weighting factor and the topic of its empir-
ical design is in our future investigation.

5. CONCLUSION

This paper presents a joint design of the interpolation filter
and FEQ in DMT systems for xDSL applications. The de-
sign algorithm is simple to realize and ensures convergence.
Simulations for VDSL downstream communications show
that for short channel a substantial improvement in trans-
mission rate can be achieved compared with the conven-
tional design.
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