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ABSTRACT

Synchronization is a factor critically affecting performance of ultra-

wideband (UWB) communication systems. We develop a blind syn-

chronization and demodulation scheme which relies on intermittent

transmission of nonzero mean symbols. These enable multi-user in-

terference (MUI)- and inter-symbol interference (ISI)-resilient tim-

ing acquisition via energy detection and low-complexity demodu-

lation by matching to a synchronized aggregate template (SAT). It

turns out that the resultant SAT receiver offers distinct advantages

over the widely-deployed RAKE receiver. Its blind operation nicely

fits the requirements of multi-user ad hoc access and its ability to

handle ISI and MUI is attractive for UWB communications. Analyti-

cal performance evaluation and simulations testing our novel scheme

confirm its high potential for deployment.

1. INTRODUCTION
Having as goal the timing of symbol boundaries, synchronization is

the first module of any coherent receiver, and thus plays a critical role

in ensuring reliable communications. Timing becomes more chal-

lenging with wideband (WB) transmissions over frequency-selective

channels which induce intersymbol interference (ISI), especially in

multiple access links where one must also deal with multiuser inter-

ference (MUI). Synchronization challenges are magnified with ultra-

wideband (UWB) transmissions where ISI effects are particularly

pronounced, causing bit error rate (BER) performance to degrade

severely due to mis-timing [1], and capacity to diminish when timing

offset as well as channel coefficients and tap delays can not be ac-

quired [2]. Most UWB synchronizers rely on training, some assume

absence of ISI [3], sampling rates as high as several GHz [4], or ab-

sence of MUI [5]. Without ISI and MUI, interesting data-aided and

blind algorithms have been developed recently in [6], where UWB

receivers acquire Timing via Dirty-Templates (TDT) formed from

the received noisy waveform; see also [7] and [8]. However, blind

TDT schemes require long data records and are available only for

single-user links. In multi-access scenarios, performance degrades

markedly in the presence of MUI, which turns out to be another

major performance-limiting factor when many asynchronous com-

municators are to be synchronized, even with data-aided TDT. In a

nutshell, there is a need for simple and preferably blind synchroniz-

ers flexible to operate with transmissions over additive white Gaus-

sian noise (AWGN) or multipath channels, in single- or multi-user

settings designed for fixed or ad hoc access.
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In the present paper, we aspire to fill this need by introducing

transmission protocols and low complexity receiver processors ca-

pable of ISI- and MUI-resilient timing acquisition and coherent de-

modulation. We will state the problem and lay out preliminary no-

tions of our protocol in Section 2. Section 3 will deal with timing

acquisition and recovery of what we term synchronized aggregate

template (SAT) that incorporates the transmit-filter convolved with

the ISI channel. We analyze the performance of our SAT estima-

tors and demodulators in Section 4. Corroborating simulations are

provided in Section 5, to confirm our conclusions in Section 6 and

testify that our novel schemes have great potential for deployment.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the ad hoc network configuration in Fig. 1, where node A

is broadcasting with period Ts information bearing symbols s(n) by

linearly modulating the transmit (spectral shaping) pulse pT (t) of

duration TT ≤ Ts. With E denoting energy per symbol, the trans-

mitted waveform is:

u(t) =
√
E

∑
n

s(n)pT (t − nTs) . (1)

This transmission can be intended to a single receiving node (point-

to-point link) or even to multiple ones. For low-duty cycle UWB

systems, pT (t) =
∑Nf−1

k=0 p(t − kTf − ckTc), where p(t) denotes

a unit-energy pulse (a.k.a. monocycle) of duration Tp < Tc (in

the order of 1ns giving rise to GHz bandwidth); Tf = NcTc is the

duration of a frame comprising Nc chips; {ck}Nf−1

k=0 ∈ [0, Nc − 1]
is a time hopping code1 shifting the pulse to user-specific positions;

and Nf is the number of frames (pulses) per information symbol.

Here, we have TT = (Nf − 1)Tf + cNf−1Tc + Tp ≤ Ts = NfTf ;

see e.g., [8]. In UWB transmissions symbols are typically BPSK

with s(n) taking ±1 values equiprobably.

The multipath channel between any two nodes is allowed to be

frequency-selective (and thus ISI-inducing) with impulse response∑L
l=0 αlδ(t − τl), where taps {αl}L

l=0 and delays {τl}L
l=0 are as-

sumed invariant over a block of symbols (block fading model). Typ-

ically, the channel’s coherence time (Tcoh) satisfies: Tcoh � Ts.

Letting τl,0 := τl − τ0, isolates the direct-path delay τ0 which cre-

ates the timing offset between transmitter and receiver, and leads to

the channel:

h(t) =
L∑

l=0

αlδ(t − τl,0). (2)

Channel- and transmit-filter effects are combined in the received

symbol waveform pR(t) of duration TR := sup{t|pR(t) �= 0},

1Here we set c0 = 0 to ensure that inf{t|pT (t) �= 0} = 0. This is

without loss of generality (w.l.o.g.), since we can incorporate c0Tc into the

unknown channel delay.
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Fig. 1. A multi-access ad hoc configuration (cluster topology).

where pR(t) := pT (t)�h(t) =
∑L

l=0 αlpT (t− τl,0), with � denot-

ing convolution.

At a receiving node, we observe u(t)�h(t− τ0) in the presence

of MUI ρ(t) and AWGN η(t). The latter has two-sided power spec-

tral density N0/2 and bandwidth W dictated by the low-pass front-

end filter’s cutoff frequency; i.e., the received waveform is [c.f. (1)

and (2)]

r(t) =
√
E

∑
n

s(n)pR(t − nTs − τ0) + η(t) + ρ(t) . (3)

Given only r(t), we seek a transmission protocol equipped with a

synchronization pattern enabling low-complexity blind estimation of

τ0, pR(t) and detection of s(n) in the presence of noise, MUI and

ISI. Towards this objective, we will adopt the following operating

conditions:

C1: We choose the symbol period Ts > ∆τmax −TT , where ∆τmax

≥maxl∈[1,L](τl−τl−1) denotes a known upper bound on successive
path delay differences.
C2: With the delay spread τL,0 (and thus TR = TT + τL,0) known,
we select an integer M := �TR/Ts� + 1.
C3: During synchronization, every M − 1 zero mean symbols s(n)
we transmit one nonzero mean symbol; i.e., writing n = kM + m
with m ∈ [0, M − 1], our symbol stream {s(n)} taking values from
a finite alphabet equiprobably, will obey: E[s(kM +m)] = µ0δ(m)
with µ0 �= 0. Outside the synchronization interval, symbols are zero-
mean throughout: E[s(n)] = 0 ∀n.
C4: The MUI in (3) is zero mean: E[ρ(t)] = 0.

Condition C1 ensures that over the [0, TR] support of pR(t), in-

tervals where pR(t) = 0 are no larger than Ts - a condition whose

usefulness will become clear soon. For clarity in exposition we rely

on exact knowledge of τL,0 in C2. However, we have shown that all

our ensuing results carry over with an upper bound too [9].

Notice also that in C3 we transmit a limited number of sym-

bols (1 out M ) with nonzero mean and only during the synchro-

nization phase; otherwise, we rely on zero mean constellations that

are power efficient. To maintain the same demodulator for zero-

mean and nonzero mean symbols, we will effect the nonzero-mean

property by minimally biasing the amplitude of certain constellation

points. For instance, we can use asymmetric BPSK with nonzero-

mean: µ0 = E[s(kM)] = 0.5θ + 0.5(−1), where θ > 1. If

the receiver can only “hear” a single transmitter broadcasting the

nonzero mean synchronization pattern, then C4 is satisfied regard-

less of how many zero-mean interfering signals from other commu-

nicating nodes are present. This is the case with star or clustered

topologies of ad hoc networks, where a single (but not always the

same) node undertakes the task of synchronizing neighbors.

Fig. 2. Schematic illustrating the energy detector used for timing

estimation.

3. BLIND SYNCHRONIZATION AND DEMODULATION
Under C3 and C4, the mean of the received waveform in (3) is:

Er(t) =
√
Eµ0

∑
n

pR(t − nMTs − τ0) . (4)

Because Er(t) is periodic with period MTs, eq. (4) establishes that

r(t) exhibits cyclostationarity also in its mean. A period of the lat-

ter can be estimated using the mean-square sense (mss) consistent

sample average across N segments of r(t) each of size MTs [10]:

r̄(t) =
1

N

N−1∑
n=0

r(t + nMTs), t ∈ [0, MTs]. (5)

Relying on Er(t) (or r̄(t) in practice), we will see next how we can

first recover a synchronized aggregate template (SAT) of pR(t) that

will subsequently allow us to demodulate.

3.1. SAT Recovery
Notice that our choice in C2 implies that over any interval of size

MTs, the mean Er(t) in (4) contains a circularly shifted (by τ0)

copy of pR(t) which has support of size TR ≤ (M − 1)Ts. In fact,

if τ0 were known, then the desired SAT would be readily obtained

as
pR(t) =

1√E
1

µ0
Er(t + τ0), t ∈ [0, TR]. (6)

To find τ0, we will exploit the zero-guards of size MTs − TR ≥ Ts

present in each period of Er(t); see Figure 2. To this end, let τ be a

candidate shift (timing offset) which w.l.o.g. we confine to [0, MTs)
as per (4). With τ ∈ [0, MTs), consider the objective function:

J(τ) :=
∫ TR

0
[Er(t + τ)]2dt, which for the correct timing τ = τ0

extracts the whole energy of pR(t); i.e., J(τ0) = Eµ2
0ER, where

ER :=
∫ TR

0
p2

R(t)dt denotes the SAT energy. We will show that

τ0 is the unique maximum of J(τ). Specifically, if τ > τ0, only

the periods corresponding to n = 0, 1 in (4) will appear2 in J(τ),

yielding J(τ) = Eµ2
0[

∫ TR

0
p2

R(t+ τ − τ0)dt+
∫ TR

0
p2

R(t−MTs +
τ − τ0)dt]. Recalling that pR(t) = 0 for t /∈ [0, TR], we obtain

J(τ) = Eµ2
0[

∫ TR

τ−τ0
p2

R(t)dt +
∫ τ−τ0−(MTs−TR)

0
p2

R(t)dt], which

can be re-written as (see also Fig. 2):

J(τ) = J(τ0) −
∫ τ−τ0

τ−τ0−(MTs−TR)

p2
R(t)dt. (7)

Because of C1, the integral in the right hand side is lower bounded

by the positive quantity
∫ τ−τ0

τ−τ0−Ts
p2

R(t)dt when τ − τ0 > 0. This

implies that for τ > τ0 (and likewise for τ < τ0), we have J(τ) <
J(τ0) ∀τ �= τ0, and therefore:

τ0 = arg max
τ∈[0,MTs)

J(τ) , J(τ) :=

∫ TR

0

[Er(t + τ)]2dt . (8)

2Likewise, if τ < τ0 then n = −1, 0 and being completely analogous to

those with τ > τ0 the subsequent steps of the proof for τ < τ0 are omitted.
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Using (5) to replace ensemble- with sample-mean estimates in (8)

and (6), establishes the main result of this subsection on blind syn-

chronization and SAT recovery, which we summarize next.

Proposition 1: Under C1-C4, the timing offset τ0 and the SAT pR(t)
can be estimated blindly in the presence of ISI and MUI using

τ̂0 = arg max
τ∈[0,MTs)

∫ TR

0

r̄2((t + τ)mod MTs)dt ;

p̂R(t) =
1√E

1

µ0
r̄(t + τ̂0), t ∈ [0, TR] , (9)

where the (mod MTs) operation is used because r̄(t) in (5) is es-
timated over a period of size MTs whereas the integration in (9)
needs its periodic extension.

Notice that no available approach can acquire timing of UWB

transmissions in the generic setting allowed herein. Neither infor-

mation bearing transmission must be interrupted for training nor

transmit-filters, channels or spreading codes need to be known, so

long as they remain invariant while averaging in (5) is performed.

Contrary to all existing approaches, our estimators in (9) bypass

channel estimation and instead acquire the timing offset and the

continuous-time SAT – a step leading to improved demodulation as

will see in the next subsection. A remark is due before that.

Remark 1: Although training is to be avoided in ad hoc access, if

available in a point-to-point link, we can take M odd and alternate

our M − 1 zero-mean ±1 symbols per synchronization period so

that their mean is deterministically zero. For a given accuracy, this

will require a smaller N in the sample average (5).

3.2. SAT-Based Demodulation
With the continuous-time SAT available, we can built either an ana-

log or a digital demodulator. For the latter, one has to first sample

p̂R(t) and r(t) and proceed as in any other digital receiver. How-

ever, to maintain the full energy in pR(t), we recommend demodula-

tion using a SAT-based correlator. Specifically, we form the decision

statistic d(k) =
∫ TR

0
p̂R(t)r(t+ τ̂0 +kTs)dt using the p̂R(t) and τ̂0

obtained as in (9). Substituting r(t) from (3), we can re-write d(k)
as

d(k) =
√
Eφp̂RpR(0; τ̃0)s(k) + η(k; τ̃0) + ρ(k; τ̃0)

+
√
E

2(M−1)∑
n=−2(M−1),n�=0

φp̂RpR(n; τ̃0)s(k + n) (10)

where τ̃0 := τ0 − τ̂0, φp̂RpR(n; τ̃0) :=
∫ TR

0
p̂R(t)pR(t − nTs −

τ̃0)dt, η(k; τ̃0) :=
∫ TR

0
p̂R(t)η(t + kTs + τ̂0)dt, and likewise for

ρ(k; τ̃0). Based on (10), Viterbi’s Algorithm (VA), sphere decoding,

or, linear equalization can be invoked depending on the application-

specific tradeoff between BER and affordable complexity. For UWB

receivers, where (sub-)chip rate sampling is prohibitive, VA applied

to d(k) is the only ML optimal (in the absence of MUI) UWB re-

ceiver based on symbol-rate samples.

To further reduce complexity, one can absorb the ISI and MUI

plus AWGN terms in (10) into a single colored noise term and pro-

ceed with a low-complexity (albeit sub-optimal) slicer. In UWB

single- or multi-user access with binary symbol transmissions this

amounts to demodulating symbols with the sign detector:

ŝ(k) = sign

[∫ TR

0

p̂R(t)r(t + τ̂0 + kTs)dt

]
. (11)

Summarizing our result in this section, we have:

Proposition 2: Both during and after the synchronization phase, ML

optimal, linear equalization and low-complexity matched filter op-
tions are available for demodulating s(k) from the decision statistic
in (10) that is based on the MUI- and ISI-resilient SAT and timing
estimated blindly under C1-C4 as in (9).

4. LARGE SAMPLE PERFORMANCE ANALYSIS

Starting with r̄(t) in (5), it is easy to check that the conditions for

applying the law of large numbers in [10] are satisfied here, ensur-

ing that r̄(t) is mss consistent; i.e., limN→∞ r̄(t)
mss
= Er(t) for

t ∈ [0, MTs]. Since well behaved functions of consistent estimators

are themselves consistent, the latter implies that limN→∞ τ̂0
mss
=

arg maxτ∈[0,MTs) J(τ) := τ0 and limN→∞ p̂R(t)
mss
= pR(t), mean-

ing that τ̂0 and p̂R(t) are indeed mss consistent. In summary, we

have :

Proposition 3: The timing and SAT estimators in (9) are mss consis-
tent. Asymptotically (as N → ∞), the demodulator in (11) collects
the maximum possible energy and thus upper bounds the BER per-
formance of the RAKE receiver.

Although the offset τ searched can be anywhere in [0, MTs), the

mss consistency of τ̂0 guarantees that we will be sufficiently close

to the true τ0 when N is sufficiently large. Conservatively, here we

suppose |τ0−τ̂0| ≤ Ts. Similarly, for large enough N , the estimated

SAT will satisfy p̂R(t) = (
√Eµ0)

−1Er(t + τ̂0) =
∑1

k=−1 pR(t +
kMTs−τ0+ τ̂0) with t ∈ [0, TR]. Considering |τ0− τ̂0| ≤ Ts, only

the summand corresponding to k = 0 contributes, and we arrive at:

p̂R(t) = pR(t − τ0 + τ̂0), t ∈ [0, TR]. (12)

Using (12) in eq. (10), we obtain φp̂RpR(n; τ̃0) =
∫ TR

0
pR(t −

τ̃0)pR(t−nTs − τ̃0)dt. Notice that when n /∈ [−(M − 2), M − 2],
we have φp̂RpR(n; τ̃0) = 0; while setting n = 0, yields the en-

ergy captured by the estimated SAT that we define as: EC(τ̃0) :=∫ TR

0
p2

R(t − τ̃0)dt. Let the noise subsume MUI, and abbreviate the

sum in (10) as ISI(k). Taking all these into account, the detec-

tion statistic implied by the mss consistency of τ̂0 and p̂R(t) for N
sufficiently large, is given by:

d(k) =
√
EEC(τ̃0)s(k) + ISI(k) + η(k; τ̃0) , (13)

where η(k; τ̃0) :=
∫ TR

0
pR(t − τ̃0)η(t + kTs + τ̂0)dt is zero mean

Gaussian with variance EC(τ̃0)N0/2. Notice that ISI(k) is a finite-

valued random variable since it involves 2(M −2) random symbols:

{s(k + n), n ∈ [−M + 2, M − 2], n �= 0}. When s(k) is binary,

the BER is given by the well known simple closed-form in terms of

the Gaussian tail (Q) function:

Pe = 2−2(M−2)
∑

ISI(k)∈AISI

Q

(√
2EEC

N0
+

√
2

ECN0
ISI(k)

)
, (14)

where AISI denotes the finite alphabet of the ISI(k) term. As an

immediate corollary of (14), we can set M = 2 and find the BER

for the ISI-free case with BPSK: Pe = Q(
√

2EEC/N0). Although

explicit forms are shown here only for BPSK, the general result is as

follows:

Proposition 4: For N large enough to ensure |τ0 − τ̂0| ≤ Ts, the
BER incurred by the SAT-based slicer (11) in the presence of zero-
mean AWGN is computable and depends on the severity of ISI and
the energy captured by the estimated SAT. For binary constellations,
the BER is given by (14).

A point worth emphasizing is the BER dependence on the en-

ergy capture EC(τ̃0) that matters more than the accuracy of τ̂0. In-

deed, even when the error τ̃0 is relatively high, if EC captures most
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power).
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of the ER energy, the resultant BER will be low; see also [1]. This is

important since after all the goal is reliable demodulation rather than

“super-accurate” synchronization.

5. SIMULATIONS

In this section, we simulate the synchronization and demodulation

schemes of Section 3 in the most challenging scenario where both

ISI and MUI are present. We will adopt BPSK symbols to modulate

the so called Gaussian (monocycle) pulse shaper p(t) = 2
√

eA(t/τg)
exp(−2t2/τ2

g ) with τg = 0.2 ns; in asymmetric BPSK, we use

θ = 3. The multipath channel is “CM 1” from the IEEE 802.15.3a

working group [11], whose delay spread is upper bounded by 30
ns. Simulated performance curves are obtained by averaging 1000
Monte Carlo runs. We select Tf = 10ns, Nf = 10 and Tc = 1ns to

induce ISI. Spreading codes {ck}9
k=0 are randomly generated taking

values of {0, 1, ..., 9}. Using M = 3 in C2, the results of imple-

menting (9) and (11) are depicted in Figs. 3 and 4 respectively.

From the simulations, one can verify that with reasonable aver-

aging (N ), our SAT receiver will be only 1 − 2dBs away from the

clairvoyant one (with perfectly known timing and channel).

6. CONCLUSIONS
We derived a transmission protocol along with ISI- and MUI- re-

silient receiver algorithms for low-complexity blind timing acquisi-

tion and demodulation based on a synchronized aggregate template

(SAT). The latter captures transmit-filter, ISI and unmodeled receiver

effects, all of which are allowed to be unknown. Our novel blind SAT

receiver offers not only robustness relative to the popular RAKE re-

ceiver, but also exhibits improved performance at lower complexity

because it avoids the approximation emerging with a reduced num-

ber of RAKE fingers while at the same time it completely avoids

estimation of the channel taps and delays needed when designing

a RAKE receiver. We also revealed that for sufficiently long av-

eraging times, what matters is the energy captured in the SAT and

not necessarily the accuracy of the timing estimate itself. It is worth

mentioning that our algorithms find universal applicability to a broad

spectrum of narrowband, wideband or UWB modalities transmitted

over AWGN or ISI-inducing wireless multi-access channels.
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