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ABSTRACT

In this paper, we present a novel method of soundfield repro-
duction (SFR) for reverberant acoustic environments. Using
an efficient parametrization of the acoustic transfer function
(ATF) over a region of space, we devise a method for ac-
curate SFR over the whole of the reproduction region. This
method is based on a practical method of determining the
ATF between each loudspeaker and the reproduction region.

1. INTRODUCTION

A problem relevant to emerging surround sound technology
is the reproduction of a soundfield. Using a set of loud-
speakers, it is possible for listeners to fully experience what
it is like to be in the original sound environment. SFR has
been discussed since the 1960s. However much of the work
so far does not address SFR in reverberant environments.
In this paper, using an efficient parametrization of the room
transfer function we extend SFR to reverberant enclosures.

A major portion of recent SFR work hinges on the
Kirchoff-Helmholtz equation. Here, SFR inside a control
region is achieved by controlling the pressure and its normal
derivative over the region boundary [1]. In similar work,
pressure is controlled on the boundary and points inside
the control region [1]. However a simpler design can be
achieved with a spherical harmonic approach [2].

The reverberant case is made difficult by the rapid varia-
tion of the ATFs over the room [3]. The standard approach
is to equalize the ATFs over multiple points [4]. However
equalization is poor away from the design points.

In this paper, we present a method of performing SFR in
a reverberant room. This method is based on an efficient
parametrization of the ATF in which the ATF is written as
weighted sum of the modes' of the control region. Using
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IThe term mode shall refer to an orthogonal basis function satisfying
the wave equation.
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Fig. 1. Use of L loudspeakers to reproduce a desired field
in a control region B? with loudspeaker signals G (w) and
ATFs Hy(x,w) from the /th loudspeaker to point x € B2.

this parametrization, we reconstruct a soundfield accurately
over the whole control region.

2. SOUND FIELD REPRODUCTION

In this section, we devise a method of performing 2-D SFR
within a reverberant enclosure, that ensures good reproduc-
tion in the plane of the loudspeakers. The objective is to
determine, for each frequency of interest, the loudspeaker
filter weights required to reproduce a desired soundfield.

2.1. Problem Definition

We aim to reproduce the pressure Py(x;w) of a desired
soundfield at each point « in the source-free region of in-
terest B2 = {x € R? : ||z|| < R} using an array of L
loudspeakers.

As shown in Fig. 1, each loudspeaker ¢ transmits an out-
put signal G¢(w). This signal encapsulates both the input
signal applied to loudspeaker ¢ as well as any filtering of it.
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To characterize the acoustic properties of the enclosure, we
define the ATF Hy(x;w) as the frequency response between
loudspeaker ¢ and point «. The sound pressure at any point
x due to loudspeaker ¢ is equal to:

Py(x;w) = Go(w)He(z;w). (1)

From Fig. 1, the sound pressure in the reproduced field re-
sulting from the L loudspeakers is then equal to

M=
M=

Plz;w) =) Piz;w) =

=1 =1

Ge(w)He(z;w).  (2)

The design task of SFR is to choose filter weights Gy (w)
to minimize the reproduction error 7 over B2,

J = | |P(x;w) — Pu(x;w)[*da(z), 3)
1532

where da(x) = x dz d¢, is the differential area element at
x, x = ||z| and ¢, is the polar angle of x.

One approach to solving this problem is to write the least
squares solution for a set of uniformly-spaced points over
B2 [4]. Below we outline a modal space approach, which
allows design over the whole region.

2.2. Modal Space Approach

In the modal space approach, we express the sound pres-
sure variables Py(x;w), P(x;w) and the ATFs Hy(x;w)
in terms of the modes of the soundfield. Provided all sound
sources lie outside of B2, at any point inside B? the pressure
variables can be written in modal form as [5]:

oo

Py(sw) = > B (w)Jn(kx)e™?r, 4
P(x;w) = Z B (W) T (kz)e= 5)

where 4 (w) and B, (w) are the nth order modal coeffi-
cient of the desired and reproduced soundfields, .J,,(-) is the
Bessel function of order n, k = w/c is the acoustic wave
number and c is speed of sound in air. We call the functions
J, (kx)e%= the modes of the soundfield. Reproduction of
the sound pressure P;(x;w) over B? with P(x;w) is equiv-
alent to reproduction of the modal coefficients {@(Ld) (w)}
with {3, (w)}.

Since, from (1), Hy(x;w) describes the soundfield of a
source when a loudspeaker is excited by a unit impulse, we
can also write it in modal form as:

oo

Hy(zsw) = > an(l,w)Ju(ka)e™,  (6)

n=—oo

where «,(¢,w) are the modal coefficients of the ATFs for
loudspeaker ¢. These modal coefficients completely char-
acterize the reverberant soundfield generated by each loud-
speaker within B?:

Observation 1 When the modal coefficients o, (¢,w) for
each loudspeaker are known for a given room, the ATF
Hy(x;w) between each loudspeaker and any position x in-
side B2 is also known, and is given by (6).

Substituting (5) and (6) into (2), the modal coefficients of
the reproduced soundfield are related to v, (¢, w) through

L
On(w) = ZG@(w)an(ﬁ,w). @)

(=1

A benefit of the modal approach is that key variables are
expressed in terms of orthogonal functions. Using the or-
thogonality property of exponential functions,

27
/ e~ Ay = 27y m, (8)
0

we derive an expression for the error J of the reproduced
soundfield over B? as a function of the modal coefficients.
Substituting (4) and (5) into (3):

00 2

Z [Bn(w) — ﬁr(ld)(w)]Jn(kx)emd’w

n=—oo

j:

B2

da(x).

It follows that:

T= > Y [Buw) = BRI Balw) = B (w)]

27 R
« / e~ imde ginde g / I (kx) Iy (kx)x dx.
0 0

Applying orthogonality property (8), the error reduces to:
T=K Y wikR)|G @) = B ()

where K £ 27 /k? and

R kR
wn(kR) £ k2 /0 [Jo (k) do = /0 [T ()2 xda.

In the next section, we show that for finite radius R, the
above parametrizations in (4), (5) and (6) can accurately be
truncated to a finite number of terms.

2.3. Active Modes

Because of the high-pass character of Bessel functions, not
all modes make a significant contribution to the sound-
field inside B2. In (9), the sequences of modal coefficients
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{ﬁ,(Ld) (w)} and {5,,(w)} for a source-free region are known
to be bounded [6]. As a result the energy contribution of
each term to reproduction error is controlled by w,(kR).
Since wy, (kR) drops rapidly to zero past n = N, only the
modes of index up to N = [kR] contribute significant en-
ergy to the soundfield inside B? [2, 6]. The 2N + 1 modes,
J_n(kx)e” N Iy (kxz)eN?e are referred to as the ac-
tive modes of B2.

Accurate SFR requires reproduction of these active
modes. Also, the ATFs mentioned in Observation 1, are
accurately known just by measuring modal coefficients

{on(tw) )y

2.4. Least Squares Solution

We now derive the least squares solution for the speaker

filter weights that minimizes the reproduction error in (9).
Because the modes become inactive for n > N, repro-

duction error in (9) can be truncated to Ny for N > N:

Nt
Ine =K Y wa(kR)|Ba(w) = B (). (10)

n:—NT

This truncated reproduction error Jp, is written in ma-
trix form, as follows. Defining the vector of loud-
speaker filter weights, g = [G1(w), Ga(w),...,GL(w)]T
where ()T is the transpose operator, the vector of the
modal coefficients of the reproduced soundfield, 8 =
BNy (W), Bongt1(W), ..., Bny (w)]T and matrix of the
modal coefficients of the room responses of all loudspeak-
ers,

CY_NT(LUJ) a—NT(L7w)
O‘—NT-H(L(")) a—NT+1(L7w)
A - . . . Pl
aNT(law) aNT(va)
(7) can be rewritten 3 = Ag. Additionally define the
vectors of the modal coefficients of the desired sound-

d d d
fild, B, = [B9, )8 % @), B )]
and the diagonal weighting matrix W =

Diag{[w—NT (kR)v w—NT-H(kR): ceey wNT(kR)]}
Writing the summation in (10) in matrix form:

Nt

Y walkR)[By — B[P = (B~ Ba)W(B — B,

n=—Nr

where (-) is the Hermitian operator, we see that:
Ine = K(B = Ba)"W (B - By).

Since 8 = Ag, we expand the truncated reproduction er-
ror as a quadratic form in the vector of loudspeaker filter
weights:

Ine(9) = K(g"Bg —b"g —g"b+ad), (11

where B = A"WA, b = A"Wg,, d = giwa,.
From [7], (11) possesses its global minimum at:

g=B'b.

This modal space approach is superior to the conventional
approaches in that it ensures reproduction (i) of any sound-
field and (ii) over the whole control region.

3. ESTIMATING SOUNDFIELD COEFFICIENTS

In this section we describe how to fully determine the
soundfield inside a control region B? by measuring the
modal coefficients 3,,(w) of the modal expansion shown in
(5). This task is an important requirement for calculating
o, (¢, w) that characterize the reverberant field generated by
each loudspeaker.

The modal coefficient estimates can be obtained by sam-
pling pressure over a single circle of radius R:

1 o . —ino,
Ba(w) 7 /O P(R, 6,3 w)e= " g,

21,
provided R is not a Dirichlet eigenvalues of J,,(kR) (where
Jn(kR) = 0). This equation can be derived by noting from
(5) that 83,,(w)J,, (kR) are the Fourier series coefficients of
P(R, ¢,;w) in variable ¢,.

Approximate modal coefficients (3, (w) are obtained
by sampling sound pressure at M evenly-spaced points
(R, ¢m) where ¢, = 2rm/M form =0,1,..., M — 1:

A L g Mo .
Pn(w) = TnR) M Y P(Rgmiw)e " F". (12)

Appropriate choice for M can be deduced by noting the
soundfield in B? is the result of the 2V + 1 active modes.
Since one equation is required for each mode, we need at
least M = 2N + 1 pressure samples where N = [kR].

Due to the presence of 1/.J,,(kR) in (12), if kR is near
one of the Dirichlet eigenvalues, coefficient error is ampli-
fied. This error amplification can be negated by oversam-
pling the pressure.

4. SIMULATION EXAMPLE

As an example, we illustrate SFR of a plane wave at 1kHz.

The design parameters are as follows. The control region
has radius 0.3m. The room is rectangular with dimensions
6.4m x 5m and wall absorption coefficient of 0.3. The re-
verberation is generated with a 2-D adaptation of the image-
source method, including image-sources of up to fifth or-
der. Though the SFR design technique is applicable for
any loudspeaker type and configuration, we position om-
nidirectional loudspeakers in a circular array of radius 2m
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concentric with B2, This setup yields an average direct-to-
reverberant ratio from each loudspeaker of —4.4dB at the
center of B2

From the Jacobi Anger expression [5] of the field pres-
sure Py(z;w) = e~ **®¥ of the plane wave originating from
direction ¢, modal coefficients are identified as 6,@ (w) =
(—i)"e~""%v where ¢, is the polar angle of §. Here N =
[kR] = 6, prompting need for 2N + 1 = 13 loudspeak-
ers. To measure the ATF coefficients {a, (¢,w)}5__, we
oversample the pressure around the boundary of B? with
M = 20 sample points.

Fig. 2 shows the reproduction of a plane wave approach-
ing from ¢,, = /6. We present the reverberant field design
(Fig. 2(c)), a free field design (Fig. 2(a)) and the same free
field design in the reverberant room (Fig. 2(b)). The rever-
berant performance of the free-field design is poor while the
reverberant design performs as well in the reverberant room
as the free-field design does in an anechoic room.

5. CONCLUSION

We have described a novel method of performing SFR in
reverberant enclosures. The key to this method is an ef-
ficient parametrization of the acoustical transfer functions.
Using a modal parametrization, we have outlined a tech-
nique to measure the acoustical transfer functions from a
loudspeaker to each point in the SFR region. This approach
allows full SFR without prior knowledge of the loudspeaker
positions or their transmission characteristics.
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