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ABSTRACT

We present exploratory studies on learning the non-linear manifold
structure, in Head Related Impulse Responses (HRIRs). We use
the recently popular Locally Linear Embedding [1] technique. The
lower dimensional manifold encodes the perceptual information in
the HRIRs, namely the direction of the sound source. Based on
this we propose a new method for HRIR interpolation. We also
propose that the distance between two HRIRs of an individual be
taken as the geodesic distance on the learned manifold.

1. HUMAN SPATIAL HEARING

Humans have an amazing ability to localize a sound source, i.e.,
determine the range, elevation and azimuth angles of the direc-
tion of the sound source. The major mechanisms responsible for
the directional capability of the human hearing system have been
fairly well understood though not completely [2, 3]. One of the
primary cues responsible for localization of the sound source are
the Interaural Time Difference (ITD) and the Interaural Level Dif-
ference(ILD) cues. However ITD and ILD cues alone do not com-
pletely explain the source localization mechanism. For example,
for all points lying on the “cone of confusion” (on half of the hy-
perboloid of revolution with vertex as the center of the head), the
ITD and ILD cues are essentially the same. Yet we have the ability
to localize the sound source in the vertical plane. Perceptual exper-
iments done with virtual sources rendered using just ITD and ILD
cues show that while the lateral placement of the source is correct,
the perceived range and elevation are not. Additional important
acoustic cues arise from the scattering of the sound by the head,
torso and the pinna. The combined effects of different scatterers
can be encapsulated in terms of the total spectral filtering provided
by the torso, head and the pinna. This filtering can be described
by a complex frequency response function called the Head Related
Transfer Function (HRTF). The corresponding impulse response is
called the Head Related Impulse Response (HRIR), which can be
experimentally measured. The spectral features in the HRTF due
to pinna diffraction and scattering are known to provide cues for
vertical localization [4]. By manipulating the cues responsible for
the directional hearing capability a virtual audio system that places
the sound at any given location can be built by using just a pair of
headphones or only two cross-talk canceled loudspeakers.

2. MANIFOLD REPRESENTATION

A HRIR of N samples can be considered as a point in N di-
mensional space. Consider all HRIRs in the mid-sagittal plane
as shown in Figure 1. Each HRIR (corresponding to one eleva-
tion and azimuth) is a point in the higher dimensional space. As
the elevation is varied smoothly, the points essentially trace out
a one-dimensional manifold in N-dimensional space. Manifolds
arise naturally whenever there is a smooth variation of parameters,
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Fig. 1. Conceptual diagram of a one-dimensional manifold em-
bedded in a higher dimensional space.

like the elevation angle in our case. Manifolds encode the percep-
tual information in a given signal. For all the HRIRs in the me-
dian plane the dominant perceptual information is the elevation of
the source. The natural order is preserved in the low-dimensional
manifold. In the N dimensional Euclidean space of the original
HRIRs, two HRIRs corresponding to far apart elevations may still
be very close to each other. However on the one-dimensional man-
ifold, where we measure the distance between two points as the
length of the geodesic on the manifold, they are far apart. If we
can unfold this low-dimensional manifold we have a good percep-
tual representation of the signal. Manifolds could prove to be cru-
cial for understanding how perception of the direction arises from
the dynamics of neural networks in the brain [5]. Nonlinear man-
ifold techniques essentially help to unfold the manifold giving a
low dimensional representation [5].

3. NONLINEAR MANIFOLD LEARNING

Let Y be a d dimensional domain contained in a Euclidean space
R Let f : Y — RP be a smooth embedding for some D > d.
The goal of manifold learning is to recover Y and f given N points
in RP. Isomap [6] and Locally Linear Embedding (LLE) [1] are
two techniques which provide implicit description of the mapping
f. Given X = {z; € R” | i =1.N}findY = {y; € R? |
¢ = 1...N} such that {z; = f(y;) | ¢ = 1...N}. Note that
we are implicitly inverting the generative model without explicit
parametrization of the generative function f.

Without imposing any restrictions on f the problem is ill-
posed. The simplest case is a linear isometry i.e. f is a linear
mapping from R — R In this case Principal Component Anal-
ysis (PCA) recovers the d significant dimensions of the observed
data. Two other possibilities are considered in [7]: f can be either
a isometric embedding or a conformal embedding. An isometric
embedding preserves infinitesimal lengths and angles while a con-
formal embedding preserves only infinitesimal angles. The Isomap
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Fig. 2. HRIR and HRTF for the left and the right ear when the
source is directly in front of the right ear at a distance of 1m from
the center of the head.

algorithm can recover an isometric embedding. LLE can recover
both isometric and conformal embeddings. In our case since we do
not know the nature of our embedding we use the LLE, since it has
a good representational capacity and does not make any assump-
tions regarding manifold structure. Also LLE is computationally
more efficient since it uses sparse matrices.

3.1. Locally Linear Embedding
LLE models local neighborhoods as linear patches and then em-

beds them in a lower dimensional manifold [1]. The LLE algo-
rithm is summarized below (For more details see [7]). For each
data point X; find its K nearest neighbors. We expect each data
point and its neighbors to lie on or close to a locally linear patch of
the manifold. Each point can be written as a linear combination of
its neighbors. Compute the weights W;; that best linearly recon-
structs X; from its neighbors. If the data lie on or near a smooth
nonlinear manifold of lower dimensionality then there exists a lin-
ear mapping (consisting of a translation, rotation and rescaling)
that maps the higher dimensional coordinates of each neighbor-
hood to global internal coordinates on the manifold. By design, the
weights that minimize the reconstruction errors are invariant to ro-
tation, rescaling and translation of the data points. Hence the same
weights that reconstruct the data points in D dimensions should
reconstruct it in the manifold in d dimensions. The weights char-
acterize the intrinsic geometric properties of each neighborhood.
Compute the lower dimensional embedding vectors Y; best recon-
structed by W;.
4. THE HRIR MANIFOLD

We use the public-domain CIPIC HRTF database [8]. The coor-
dinate system followed is the head centered interaural polar coor-
dinate system. The interaural axis is the line passing through the
center of the left and the right ears. The origin of this spherical
coordinate system is the interaural midpoint which is exactly the
midpoint of the line joining the two ears. The azimuth angle 6 is
the angle between a vector to the sound source and the vertical me-
dian plane or the midsagittal plane and varies from —90° to +90°.
The elevation ¢ is the angle from the horizontal plane to the pro-
jection of the source into the midsagittal plane, and varies from
—90° to 270°.

The database contains HRIRs sampled at 1250 points around
the head for 45 subjects. Azimuth is sampled from —80° to 80°
and elevation from —45° to +230.625°. The temporal sampling
frequency is fs = 44.1kH z. Each HRIR is 200 samples long cor-
responding to a duration of about 4.5ms. Figure 2 shows a typical
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Fig. 3. (a) HRIR and (d) HRTF as a function of elevation for az-
imuth 0°. (b) and (e) The one-dimensional manifold recovered
by the LLE technique using K = 2 neighbors for the HRIR and
HRTF respectively. (e) and (f) shows the same manifold embedded
in three dimensions recovered using K = 4 neighbors.

HRIR and the magnitude of the HRTF for both the left and the
right ear for a person when the source is directly in front of the
right ear at a distance of 1 m from the center of the head. The ITD
can be clearly seen by comparing the HRIR for the right and the
left ear. The difference in the spectral response for the right and
the left ear are due to scattering by the head, torso, and the pinnae.

4.1. The HRIR manifold

Consider all the HRIRs lying in the midsagittal plane (i.e. 0° az-
imuth and all elevations) as shown in Figure 1. Figure 3(a) shows
the HRIR for a particular subject for azimuth 0° as a function of
elevation. The HRIR is displayed as a gray scale image with the
grayscale corresponding to the amplitude of the HRIR. Figure 3(b)
shows the one-dimensional manifold recovered using the LLE al-
gorithm. K = 2 neighbors were used. The plot shows the distance
on the one-dimensional manifold as a function of elevation. The
corresponding manifold is shown embedded in three dimensions
in Figure 3(c). Figure 3(b) is unrolled version of a manifold as in
Figure 3(c), but in a high dimensional space. One interesting ob-
servation is that even though the elevation is sampled uniformly the
points are not uniformly distributed in the one-dimensional man-
ifold. In Figure 3(b) it can be seen that the points are clustered
closely for negative elevations and elevations above 180°.

4.2. The HRTF manifold

In the strictest sense the HRIR is a not a minimum-phase sys-
tem, because of the multiple-transmission paths associated with
diffration/reflections from different parts. However for simplic-
ity we use only the magnitude spectrum. We ran the same algo-
rithm on the HRTF spectrum magnitude instead of the HRIR. We
obtained similar results. Figure 3(d) shows the HRTF magnitude
spectrum in dB. Figure 3(e) and Figure 3(f) show the correspond-
ing one-dimensional manifold.

4.3. Choice of K

The only free parameter that needs to be selected in the LLE algo-
rithm is the number of neighbors K. First the algorithm can only
recover embeddings with dimensionality strictly less than K. K
is closely related to the intrinsic dimensionality of the data. This
step is vulnerable to short-circuit errors if the neighborhood is too
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Fig. 4. The manifold recovered for different values of K.
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Fig. 5. The manifold recovered for different azimuth angles.

large with respect to the folds in the manifold on which the data
points lie or if noise in the data moves the points slightly off the
manifold. Even a single short-circuit error can lead to a drasti-
cally different (and incorrect) low-dimensional embedding [9]. In
such cases appropriately selecting K is very essential for the algo-
rithm. Choosing a very small neighborhood is not satisfactory, as
this can fragment the manifold into a large number of disconnected
regions. Figure 4 shows the manifold recovered for different val-
ues of K. For K < 4 the manifold is recovered. However as K
increases the folding behavior can be seen. The reason for this is
that the number of neighbors decides the the boundary of the lin-
ear patch. If the manifold is curved very closely then there may
be problems of short-circuit. Figure 5 shows the manifold recov-
ered for different azimuth angles. Figure 6 shows the manifold
recovered for different subjects.

5. ANEW DISTANCE METRIC

One of the problem that frequently arises is how to compare any
two given HRIRs i.e. how to formulate a distance metric in the
space of HRIRs. Suppose we have modelled/interpolated a HRIR
and often we have to find out how good is the modelled to the
actual HRIR. The distance metric has to be perceptually inspired.
The absolute justification however is to do psychoacoustical tests.
In the absence of any good perceptual error metric the most com-
monly used one is the squared log-magnitude error of the spectrum
of the HRIRs. If H(w, ¢1) and H(w, ¢2) are the frequency re-
sponse of two HRIRs h(n, ¢1) and h(n, ¢2) corresponding to two
elevation angles ¢1 and ¢> then one measure of distance between
the two HRIRs which is widely used is,
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Fig. 6. The manifold recovered for different subjects.
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Fig. 7. (a)The distance matrix using the metric defined in Equation
1 (b) using the distance on the manifold.

It is tough to decide what aspects of a given signal are perceptually
relevant. For our case of all HRIRs for different elevation angles,
the obvious perceptual information to be extracted is the elevation
of the source. A natural measure of distance would be the distance
on the extracted one dimensional manifold. Figure 7(a) shows
the distance (according to Equation 1) between each HRIR and
all other HRIRs, for all elevations. Note that all elements along
the diagonal must be zero. Figure 7(b) shows the same with the
distance as measured on the manifold. It can be seen that Figure
7(b) is a better distance metric. The distance between two HRIRs
is proportional to how far they are in elevation.

6. HRIR INTERPOLATION

As of now we have a implicit mapping from the high dimensional
HRTF space to the one-dimensional elevation manifold. However
it is also possible to go from the manifold to the signal represen-
tation. To do this we use the same property which was used by
the LLE algorithm. The weights that reconstruct the data points in
higher dimensions should reconstruct it in the lower dimensional
embedded manifold. The weights characterize the intrinsic geo-
metric properties of each neighborhood. If we want the HRTF for
anew elevation ¢ we find the value of the lower-dimensional man-
ifold at the required angle ¢. The one-dimensional manifold can
be linearly interpolated or some other higher order interpolation
can be used to fit the lower dimensional manifold. Once we know
the value on the manifold it can be written as a linear combina-
tion of its neighbors and compute the weights that best linearly
reconstructs it from its neighbors. The same weights reconstruct
the HRTF in the higher dimensional space. Figure 8 shows the
original and the reconstructed HRTF for elevation ¢ = 0°. Figure
9 shows the same for all elevations. In Figure 9(b) each HRTF is
obtained by reconstructing it from its X = 2 neighbors. Note that
even though we are writing the HRTF as a linear combination of
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Fig. 8. The actual and the reconstructed HRTF for elevation 0°
and azimuth 0°.
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Fig. 9. The (a) actual and the (b) reconstructed HRTF for all ele-
vations and azimuth zero.

its neighbors, it is not the same as linearly interpolating from the
neighbors. We first learn the manifold, the interpolate in the man-
ifold representation, and then go back to the original HRTF repre-
sentation by exploiting the local linearity in the lower-dimensional
manifold. To evaluate the proposed method of interpolation we
first ran the LLE algorithm on all the elevation except one. Us-
ing this manifold we then generated the HRIR for the excluded
elevation. The same was repeated for all elevations. Figure 10(a)
shows the error between the actual and the interpolated HRTF us-
ing the error metric in equation 1 for different elevations. Figure
10(b) shows the same but using the distance on the manifold as
a error metric. As pointed out in the previous section the mani-
fold distance is a more reliable metric. Note that the error is large
for lower elevations and elevations behind the head. The HRTF
is more complicated in those elevations and the one-dimensional
manifold is not able to capture all the details.

7. THE COMPLETE MANIFOLD

Until now we were concerned with all the HRTFs in the vertical
plane. The same results can be extended to HRTF of all elevations
and azimuths. Now we have a two dimensional manifold. Figure
11 shows the manifold for all elevations and azimuth from 0° to
45°. K = 4 neighbors were used to unfold the manifold. We
would like to comment that the algorithm is not very stable when
using the complete data. We got better results when considering
only the manifold of elevations.

8. CONCLUSIONS

We presented a new representation for the HRTFs in terms of the
elevation manifold they lie on. We also proposed a new distance
metric and a new scheme for HRIR interpolation. Future work
would include enforcing the intrinsic dimensionality in the LLE
procedure and evaluation with other interpolation methods.
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Fig. 10. Error between the actual and the interpolated one using
the (a) error metric in Eq.1 and (b)the distance on the manifold as
a error metric for different elevations.
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Fig. 11. The complete two dimensional manifold for all elevations
and azimuths from 0° to 45°.
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