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ABSTRACT

This paper proposes a novel noise reduction system in arbi-
trary noise environments, consisting of localized and non-
localized noises, where few existing systems work well. In
the proposed system, localized noises are estimated and re-
duced by the hybrid noise estimation technique we previ-
ously proposed and spectral subtraction. And non-localized
noises are reduced by a post-filter of which the performance
is further improved by a novel estimator for the a priori
speech absence probability calculated under the assump-
tion of diffuse noise field. Experimental results show that
the proposed system results in significant improvements in
terms of speech quality measures and speech recognition
performance in various noise conditions.

1. INTRODUCTION

In recent years, much research has been undertaken into
noise reduction to improve the performance of speech com-
munication and recognition systems. Noise reduction sup-
press environmental noises, improving the speech quality
and increasing the recognition accuracy. Thus, noise reduc-
tion has been of increased interests for many researchers.

Although a variety of noise reduction systems have been
proposed, few of them can reduce both localized and non-
localized noises simultaneously in arbitrary noise environ-
ments [1]-[6]. To suppress localized noises, a lot of algo-
rithms based on beamforming techniques have been pre-
sented with the drawback of large physical size (delay-and-
sum beamformer) or adaptive signal processing (GSC beam-
former) [1]. To suppress non-localized noises, post-filtering
is normally needed. A commonly used post-filter is the one,
first proposed by Zelinski, based on the assumption of inco-
herent noise field [4]. This assumption is, however, seldom
satisfied in practical environments, especially for closely-
spaced microphones and low frequencies. Recently, a gen-
eralized expression for Zelinski post-filter has been derived
based on the a priori knowledge of noise field [5].
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Fig. 1. Microphone array and signal model.

In this paper, we propose a novel noise reduction system
which consists of localized noises suppression previously
presented, and non-localized noises suppression based on
the optimally-modified log-spectral amplitude (OM-LSA)
estimator [6]. Under the assumption of diffuse noise field
which was confirmed to be more accurate in a number of
realistic noise environments [5], we propose a novel esti-
mator for the a priori speech absence probability (SAP),
further improving the noise reduction ability of the post-
filter. The performance of proposed system is investigated
and is shown to result in significant improvement over the
comparative systems in various noise environments.

2. PROPOSED NOISE REDUCTION SYSTEM

Considering a three-sensor microphone array in a noisy en-
vironment, shown in Fig. 1, the observed signal on each
microphone is composed of desired speech signal, local-
ized noises arriving from determinable directions and non-
localized noises propagating in all directions. The aim of
our task is to reduce both localized and non-localized noises
simultaneously while keeping the desired speech distortion-
less. To implement this idea, we construct a noise reduc-
tion system, shown in Fig. 2, which consists of two main
parts: localized noise suppression and non-localized noise
suppression, detailed in the following.
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Fig. 2. Block diagram of the proposed system

2.1. Localized Noises Suppression

To suppress localized noises, authors have proposed a hy-
brid noise estimation technique, which combines a subtrac-
tive beamformer based multi-channel estimation technique
and a soft-decision based single-channel estimation tech-
nique, yielding more accurate spectral estimates for local-
ized noises [3]. The spectrum of localized noise, N̂ c(λ, ω),
calculated by the hybrid technique, can be given by [3]:

N̂ c(λ, ω) =

{
N̂ c

m(λ, ω), not array sidelobes,

N̂ c
s (λ, ω), array sidelobes,

(1)

where λ and ω are the frame index and the frequency in-
dex; N̂ c

m(λ, ω) and N̂ c
s (λ, ω) are the estimated spectrum for

localized noise by the multi-channel technique [2] and the
single-channel technique [3], respectively. Estimation accu-
racy of the hybrid technique is further improved by consid-
ering the strong correlation of speech presence uncertainty
between adjacent frequencies and consecutive frames [3].
The estimated spectra of localized noises are then subtracted
from those of three noisy signals.

2.2. Non-Localized Noises Suppression

The residual non-localized noises are further suppressed by
a post-filter which is based on the OM-LSA estimator char-
acterized by the following gain function [6]:

G(λ, ω) = GH1(λ, ω)1−q(λ,ω)G
q(λ,ω)
min , (2)

where Gmin, q(λ, ω) and GH1(λ, ω) are a constraint con-
stant, the SAP at spectral subtraction output and the gain
function of the traditional MMSE-LSA estimator when speech
is surely present given in [7], respectively.

As Eq. 2 shows, the performance of this post-filter is
greatly dependent on the SAP q(λ, ω) which is further closely
related to the a priori SAP q

′
(λ, ω) according to Bayes’ rule

[6]. Therefore, the performance of this post-filter is believed
to be significantly dependent on the a priori SAP. However,
the problem of how to accurately calculate the a priori SAP
at spectral subtraction output has not been solved so far. In
the following, we propose a new estimator for the a priori
SAP based on the coherence characteristic of the noise field
at spectral subtraction output.
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Fig. 3. Magnitude-squared coherence in car environment: Theo-
retical MSC (solid line) and measured MSCs at the input of the
system (dashdot line) and at the output of spectral subtraction
(dashed line). The distance between microphones is 10 cm.

2.2.1. Noise field analysis at spectral subtraction output

To characterize noise field, a widely used measure is magnitude-
squared coherence (MSC) function, defined as:

Γ(λ, ω) =
|φij(λ, ω)|2

φii(λ, ω)φjj(λ, ω)
, (i, j = 1, 2, 3), (3)

where φij(λ, ω) is the cross-spectral density between two
signals with auto-spectral densities of φii(λ, ω) and φjj(λ, ω).

The MSC of theoretical diffuse noise field is shown in
Fig. 3 along with the measured MSCs using the input car
noises and the outputs of spectral subtraction. Fig. 3 sug-
gests that: (i) car noise environment is characterized by dif-
fuse noise; (ii) diffuse characteristic of non-localized noises
does not change at spectral subtraction output; (iii) noises
at spectral subtraction output are weakly correlated in high
frequencies and strongly correlated in low frequencies.

2.2.2. An estimator for the a priori SAP

Based on the observations mentioned above, the MSC spec-
tra are divided into two parts: high frequency region with
low MSCs and low frequency region with high MSCs. And
the transient frequency between two regions is the first min-
imum frequency of the MSC of theoretical diffuse noise
field, given by f = c/(2d), where d and c are the dis-
tance between neighboring microphones and the velocity of
sound propagation, respectively. Furthermore, two differ-
ent schemes are proposed to determine the a priori SAP in
the high frequency region and the low frequency region, as
follows:

• In the high frequency region: The MSC spectra are
further divided into E sub-bands and averaged across
the frequencies in each sub-band, obtaining the av-
erage MSC Γ̄e(λ, ω) (e = 1, 2, ..., E) in e-th sub-
band. If a high coherence (Γ̄e(λ, ω)>Tmaxe) is de-
tected, a speech present state is detected presumably.
If a low coherence (Γ̄e(λ, ω) < Tmine) is detected,
a speech absent state is detected presumably. For
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Γ̄e(λ, ω)∈ [Tmine, Tmaxe], the a priori SAP is de-
termined by the linear interpolation. Thus, the a pri-
ori SAP in the high frequency region, q

′
h(λ, ω), can

be given by:

q
′
h(λ, ω)=

⎧⎪⎨
⎪⎩

0, Γ̄e(λ, ω)>Tmaxe ,

1, Γ̄e(λ, ω)<Tmine ,
Tmaxe−Γ̄e(λ,ω)
Tmaxe−Tmine

, otherwise,

ω ∈ [ωlow
e , ωhigh

e ], (4)

where ωlow
e and ωhigh

e are the low and high bound-
aries of e-th sub-band, and Tmine and Tmaxe are
two empirical constants.

• In the low frequency region: The speech is assumed
to be present when it is present in the high frequen-
cies. Thus, an average MSC Γ̄(λ, ω), obtained by
averaging the MSCs across the frequencies over the
transient frequency, provides a useful measure to de-
tect speech. Based on the MSC Γ̄(λ, ω) and follow-
ing the same ideas in the high frequency region, the
a priori SAP in the low frequency region, q

′
l(λ, ω), is

estimated as:

q
′
l(λ, ω)=

⎧⎪⎨
⎪⎩

0, Γ̄(λ, ω)>Tmax ,

1, Γ̄(λ, ω)<Tmin ,
Tmax−Γ̄(λ,ω)
Tmax−Tmin , otherwise,

(5)

where Tmax and Tmin are another two empirical
constants, and

Γ̄(λ, ω) =
1
E

E∑
e=1

Γ̄e(λ, ω). (6)

The estimated a priori SAP is then incorporated into the
post-filter with the purpose of improving the noise reduction
performance of this post-filter.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Configurations

An equally-spaced linear microphone array, consisting of
three sensors with a inter-element spacing of 10 cm, shown
in Fig. 1, was mounted above the windshield in a car. The
array was about 50 cm apart from and directly in front of
the driver. The recording was performed across all chan-
nels simultaneously, which were mainly composed of en-
gine noise, high air-condition noise and the noise coming
from frication between tyres and road. Clean speech data,
taken from NTT database, consists of 350 phoneme-balanced
sentences. Both speech and noise data were first re-sampled
to 12 kHz at 16 bit accuracy.

To examine the performance of proposed system in var-
ious noise conditions, two sets of noise-corrupted data were
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Fig. 4. Segmental SNR results for data sets A (a) and B
(b). Delay-And-Sum beamformer output (dotted); Single-channel
OM-LSA estimator output (dashed); Spectral subtraction output
(dashdot); Proposed system output (solid).

generated. The first data set (set A) involved the addition of
a randomly selected segment of the multi-channel car noise
at different global SNR levels 0-20 dB across 50 speech sen-
tences. The second data set (set B) involved the addition
of the multi-channel car noise and a secondary speaker’s
speech (passenger’s interference), which was Japanese vowel
/a/, with DOA of 60 degree to the right. Data set B corre-
sponds to a realistic context for a typical car environment.
To compare the performance of proposed system, other three
systems were chosen, that is, delay-and-sum beamformer
with Wiener post-filter, the OM-LSA single-channel algo-
rithm and the localized noise suppression algorithm alone
(the output of spectral subtraction).

3.2. Speech Enhancement Experiments

A first set of experiments was conducted using data sets A
and B. To assess the performance of speech enhancement
systems, a widely used objective speech quality measure,
segmental SNR (SEGSNR), was used since it was shown
to be more correlated to subjective evaluation results [8].
SEGSNR is defined as the ratio of the power of clean speech
to that of noise signal embedded in a noisy or an enhanced
speech signal by tested algorithms. The SEGSNR improve-
ments for all tested noise reduction algorithms in two noise
conditions are shown in Fig. 4. Moreover, Fig. 5 plots the
enhanced signals as well as clean and noise-corrupted sig-
nals for an utterance corresponding to “ka no jyo wa te no
kon da go chi so o tu ku ri ma shi ta” when both car noise
and passenger’s interference are present.

Fig. 4 shows the proposed algorithm results in better
speech enhancement performance than the comparative al-
gorithms in all tested noise conditions at various SNR levels
consistently, especially in low SNRs. These improvements
are attributed to its success in reducing both localized and
non-localized noises simultaneously compared to other al-
gorithms. This fact can also be clearly observed from the
signals shown in Fig. 5.
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Fig. 5. Waveforms of clean signal (a); noise-corrupted signal
(SNR = 10 dB) (b); Delay-And-Sum beamformer with Wiener
post-filter output (c); Single-channel OM-LSA estimator output
(d); Spectral subtraction output (e); Proposed algorithm output (f).

Technique Clean 20 dB 15 dB 10 dB 5 dB 0 dB
Noisy 86.33 60.72 48.14 41.17 33.71 29.28

DS+Filter 86.17 58.13 52.94 47.70 39.17 31.87
OM-LSA Est. 85.63 71.37 63.53 51.81 33.39 21.88

Spec. Sub. 86.06 58.18 51.92 43.33 32.52 21.83
Proposed 85.31 74.99 68.29 57.48 47.38 38.12

Table 1. Speech recognition accuracy (%) for data set A.

3.3. Speech Recognition Experiments

To do recognition experiments, a phoneme-based recogni-
tion system was constructed. In the experiments, 300 clean
sentences were used for training. And the residual 50 sen-
tences, just same as used in the speech enhancement ex-
periments, were used for testing. Standard 16 MFCCs, to-
gether with the delta and acceleration features, were used as
feature vector of 48 dimensions. In this system, 29 HMM
models were generated for 28 mono-phones and a “silence”
which was used to be inserted at the start and the end of
each sentence. Each model was trained as a left-to-right
topology with three states (without skip among states) by
using Baum-Welch algorithm with a flat-starting embedded
training. Output distribution probabilities were modelled by
means of mixtures of 12 Gaussian components. Standard
Viterbi decoding technique was used for recognition.

The speech recognition results for data sets A and B are
given in Tables 1 and 2 in terms of the recognition accuracy,
defined as: accuracy = H−I

K × 100%, where H , I and K
are the number of correct phonemes, the number of inser-
tions and the total number of phonemes. The recognition re-
sults illustrate that the proposed algorithm produces higher
speech recognition accuracy compared to other algorithms.
And the performance degrades as noises increase. These
improvements are attributed to the fact that both statistic
characteristic of signals and spatial characteristic of noise
field are taken into account in the proposed system.

Technique Clean 20 dB 15 dB 10 dB 5 dB 0 dB
Noisy 86.33 51.75 43.30 35.71 29.61 26.74

DS+Filter 86.17 50.46 44.79 38.79 35.76 31.39
OM-LSA Est. 85.63 68.67 63.21 45.00 23.55 21.12

Spec. Sub. 86.06 57.21 51.49 39.71 27.88 12.91
Proposed 85.31 73.69 67.21 53.70 38.14 35.88

Table 2. Speech recognition accuracy (%) for data set B.

4. CONCLUSIONS

A novel noise reduction system in arbitrary noise environ-
ments has been proposed. The system consists of localized
noise suppression, which is based on a hybrid noise estima-
tion technique and spectral subtraction, and non-localized
noise suppression which is implemented by a post-filter based
on the OM-LSA estimator. The performance of this post-
filter is further improved by incorporating an estimator for
the a priori SAP under the assumption of diffuse noise field.
Experimental results indicate that the proposed system re-
sults in significant improvement over the comparative algo-
rithms in terms of SEGSNR and speech recognition accu-
racy.
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