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ABSTRACT

The sampling of the soundfield using circular microphone arrays
is studied. We give a new representation of the soundfield sampled
on such an array using the two-dimensional Fourier transform. We
then show how we can reconstruct the soundfield at all possible po-
sitions on the array from a finite number of measurements. We give
the necessary azimuthal angular sampling frequency necessary to
reconstruct the data up to some temporal frequency. This new tech-
nique is applied to interpolate Head Related Transfer Functions
(HRTFs) where we also derive an angular sampling theorem.

1. INTRODUCTION

In this paper we study the plenacoustic function on a circle. This
representation models the soundfield everywhere in space (e.g. in a
room). The plenacoustic function has already been studied to sam-
ple the soundfield along linear or planar arrays in [1, 2, 3]. There,
interesting results have been shown but interpolation is always suf-
fering border effects due to the finite length of the array and good
reconstruction results are only obtained in the middle of the array.
The best results for interpolation are found using a circular array as
will be shown in the present paper. Circular microphone and loud-
speaker arrays are widely used in wave field synthesis and beam-
forming systems [4]. A contribution of this paper defines exactly
what angular sampling frequency needs to be used to reconstruct
the soundfield up to some temporal frequency. The interpolation
method to achieve reconstruction is also presented.

The theoretical results obtained in the first part of the paper are
then applied to the interpolation of Head Related Transfer Func-
tions (HRTFs). Much work has been done to achieve good in-
terpolation of HRTFs (e.g. pole-zero approximation models [5],
spherical spline-based methods [6]) but nevertheless the problem
is still considered as an open question [7]. In this respect, appli-
cation of our novel technique allows us to derive an angular sam-
pling theorem for HRTFs. We define the necessary azimuthal an-
gular spacing between HRTFs measurements in order to perfectly
reconstruct HRTFs at any azimuth up to a specified temporal fre-
quency. This can be done for all possible elevation angles. With
this sampling criterium we obtain interesting interpolation results
on both simulated and real measurement data sets.

The work presented in this paper was supported in part by the National
Competence Center in Research on Mobile Information and Communica-
tion Systems (NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322.

2. PLENACOUSTIC FUNCTION ON THE CIRCLE

In order to construct the plenacoustic function (PAF) for a circu-
lar array, we need to consider the scheme shown in Fig. 1(a). The
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Fig. 1. Circular arrays. (a) Circular microphone array. (b) Typical
setup to record someone’s HRTFs.

source is located at position S(sx, sy, sz) and the different micro-
phones are at positions M(mx, my, mz). The PAF on the circle, is
a continuous function that contains all the room impulse responses
from the position of the source to all the possible microphones po-
sitions on the circle. In a first scenario we will present results in
free field situation. Further using the image model method [8], we
will show that the same results are obtained when one considers
the complete room impulse response.

2.1. Construction of the plenacoustic function in free field

One can write the positions of the microphones in cylindrical coor-
dinates as follows: mx = ox+r cos θ, my = oy+r sin θ. Without
loss of generality and for simplicity of the following calculations,
consider a rotation of the axis such that the y component of the
source is canceled. Further consider the center of coordinates to
be the center of the circle formed by the microphones. Therefore,
we have that ox = oy = 0. In free field, we have the following
expression for the time traveled by the wave from the source to the
microphones:

t =

√
(sx − r cos θ)2 + (r sin θ)2 + (sz − mz)2

c
(1)

with c the speed of sound propagation. The function given in (1)
has a shape that can be seen in Fig. 2(a). The time taken by the
sound wave to arrive at each microphone is given as function of
the angle θ. Fig. 2(b) represents the Fig. 2(a) as seen from above.
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For simplicity, this representation will be used for the rest of the
paper. Note that in a first step we do not consider yet the attenua-
tion depending on the distance traveled. It will be considered later
in Section 2.3. We call qa the PAF without attenuation and pa the
exact PAF.
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Fig. 2. Plenacoustic function on the circle. (a) PAF in 3D. (b) Top
view of the PAF.

2.2. Plenacoustic sampling

The PAF as described above is a function of time and angle, q̃a(θ, t).
Note that the symbol ˜ indicates a function defined on a continu-
ous time and angle domain. We can study this function in the fre-
quency domain. We need to take the 2-dimensional Fourier trans-
form (2D-FT) of the gathered data by introducing the temporal
pulsation Ωt and the spatial pulsation Lθ . The obtained spectrum
is Q̃a(Lθ , Ωt). Note that the PAF on a circle is a periodic function
of period 2π in θ and continuous in t. Therefore, Lθ only takes
discrete values being z 2π

T
, with z ∈ Z and T being the period

of 2π. Lθ is thus only defined for the integer values. In order to
sample the PAF, we need to sample the room impulse responses
at a certain temporal sampling pulsation ηt depending on the de-
sired audio bandwidth. Further, by taking an evenly spaced finite
number of impulse responses, we uniformly sample the PAF along
the circle. We introduce ηθ = 2π

∆θ
with ∆θ the angular spacing

between two consecutive microphones positions. When the PAF is
sampled, repetitions of the spectrum occur. The discrete spectrum
Qa(lθ, ωt) is given by the following expression:

Qa(lθ, ωt) =
1

∆θ∆t

∞∑
k1=−∞

∞∑
k2=−∞

Q̃a(lθ − 2πk1

∆θ
, ωt − 2πk2

∆t
).

lθ and ωt are the angular pulsation and the temporal pulsation of
the sampled PAF respectively. Note that taking the 2D-FT of the
sampled PAF corresponds to taking a discrete Fourier transform
in the time axis and a discrete Fourier series on the spatial axis,
with lθ ∈ {

0, 1, ..., ( 2π
∆θ

− 1)
}
. The spectrum (without spectral

repetitions) is shown in Fig. 3. We observe that most of the energy

ω
t

Fig. 3. 2D-FT of the circularly sampled room impulse responses.
is contained in a bow-tie region. Outside of that region, the energy
is almost zero.

As we know that the 2D-FT of a line of slope m is another line
of slope − 1

m
, we look for the maximal slope in (1). The obtained

value is a lower bound for the support of the bow-tie region. Since
the function is not a simple line, there is still some energy outside
of the bow-tie region. However numerical computations show that
the spatial decay of the spectrum appears to be exponential. This
decay is dependent on the regularity of (1) and is still under in-
vestigation. The first derivative of (1) with respect to θ is given
by

dt

dθ
=

sxr sin θ

c
√

(sx − r cos θ)2 + (r sin θ)2 + (sz − mz)2
(2)

To know where the maxima of this function occur, we calculate the
second derivative of (1) with respect to θ. By setting the obtained
expression to zero, we obtain the values of the angle θ that maxi-
mize the first derivative. Replacing these values in (2) leads us to
the maximal value of the first derivative or to the maximal slope of
(1):

dt

dθ
= ±

√
A + 2sxr −√

A − 2sxr

2c
(3)

with A = s2
x +r2+(sz −mz)

2. When the source is located in the
same plane as the circular array, the expression of the slope gets
simpler: for a source located inside of the circular array, the max-
imal slope of (1) is dt

dθ
= ± (sx)

c
; for a source located outside of

the circular array, the slope of (1) becomes dt
dθ

= ± (r)
c

. The max-
imal slope is thus only dependent on the minimum between the
distance from the center of the array to the source and the radius
of the array,

dt

dθ
= ± (min(sx, r))

c
. (4)

Further we can also prove [3] that when the source is not in the
plane of the circular array, the slope is always smaller or equal to
(4).

dt

dθ
=

∣∣∣∣
√

A + 2sxr −√
A − 2sxr

2c

∣∣∣∣ ≤
∣∣∣∣min(sx, r)

c

∣∣∣∣ .

This is an interesting result since all the reflections present in a real
room corresponding to the virtual sources obtained by the image
source method [8] contain different z-components than the the cir-
cular array. Therefore, these virtual sources lead to smaller slopes
and therefore evolve slower in space. This allows us to conclude
that the maximal slope in a real room (with reflections) is simply
r
c
. The slope of the triangular spectrum is now:

2c√
A + 2sxr −√

A − 2sxr
≥ c

min(sx, r)
.

The minimal slope that we can observe in the bow-tie shape (in
presence of reflections) in a typical room is therefore

ωt = ± clθ

r
. (5)

2.3. Effect of distance traveled

As one knows from the solution of the wave equation [9], the pres-
sure decays proportionally to the distance traveled. We can ex-
press the real PAF as the product in time domain of the constant
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amplitude PAF shown in Section 2.2 with a function that adds the
amplitude variation. This can be written as

p̃a(θ, t) = a(θ)q̃a(θ, t).

In frequency domain, it corresponds to the following convolution

P̃a(Lθ , Ωt) = (A(Lθ)δ(Ωt)) ∗ Q̃a(Lθ, Ωt).

Because of the smooth character of a(θ), its Fourier transform is
a very fast decaying function. The biggest variation in distance is
obtained when the loudspeaker is in the plane of the microphones.
We numerically show some A(Lθ) in Fig. 4.

A(Lθ) =

∫ 2π

θ=0

e−jLθθ

r
√

ρ2 − 2ρ cos θ + 1
dθ (6)

with ρ = sx

r
. For Lθ = 5, we already have a very large decay

of more than 60dB. Therefore, we consider that the effect of the
convolution with A(Lθ) is very small and can be considered as
negligible.
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Fig. 4. A(Lθ) for different ρ.

2.4. Interpolation results

The interpolation is done using a usual sinc interpolator. This in-
terpolation is very suitable in the case of a circular array since the
Fourier transform is applied on a circular array that is 2π peri-
odic. In the case of a linear array [2], interpolation performance
decreases due to the finite length of the array. The spectrum of the
PAF of an infinite linear array is decaying very fast [2], but once
the PAF is windowed along the spatial axis, the spatial decay of its
spectrum is affected.

We simulate room impulse responses on a circular array of ra-
dius 1 meter every 1◦. This angle corresponds to the critically sam-
pled angular spacing for a temporal sampling frequency of about
19 kHz. We interpolate the data by a factor 2 and we compare
them with the corresponding simulations. We use a normalized
mean squared error (MSE) criterium to evaluate the interpolation
error. The MSE is zero on every odd positions (since these were
the data used for the interpolation) and the error on the even spatial
positions is of the order of −60 dB as can be seen in Fig. 5. These
results indicate that the interpolation formula is quite accurate.
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Fig. 5. MSE for the interpolated spatial positions.

3. HRTF INTERPOLATION

In Section 2, we have presented theoretical results for the sam-
pling of the soundfield using a circular microphone array. The
exact same theory can be applied for the dual problem, the case
when we listen at one position the soundfield generated by a cir-
cular loudspeaker array. A very interesting application of this dual
problem is the sampling of HRTFs in an anechoic chamber to mea-
sure the characteristics of the pinnae, head and torso of a person
[10]. The typical setup for an HRTF measurement is shown in
Fig. 1(b). The loudspeakers are located along a circle around the
person. The microphone is located in the ear of the listener to cap-
ture the soundfield at the entrance of the ear. One can construct
a ”plen-HRTF” function by placing all the different head related
impulse responses next to each other and take the 2-dimensional
Fourier transform of this data. To understand the shape of the spec-
trum, we apply the same theory as the one presented in Section 2.
When the head is well centered in the middle of the loudspeaker
array, we consider the position of the microphone to be of the order
of 9 cm (half the spacing between the two ears)[10]. We therefore
can predict that in order to sample HRTFs, we have to satisfy the
following relation:

ωt = ± clθ

.09
. (7)

This equation tells us that in order to sample HRTFs for a normal
adult human being at 44.1 kHz, a spacing of 4.9◦ is necessary.

3.1. Head shadowing

The theory expressed above is valid in the case of HRTFs when
one does not consider the effect of the head shadowing. In practice,
the wave is diffracted by the head [10]. This diffraction has to be
taken in account and modifies (1). We give first an intuition about
the effect of the diffraction followed by a more accurate model.
Consider different loudspeakers located at radius r and angle θ as
shown in Fig. 1(b) (the following formulas are for θ < π, similar
formulas exist for θ > π). For each loudspeaker position, consider
the tangent to the head at point p. The point p has a radius of d

2

and an angle of θ − α, with cos α = d/2
r

. For all the directions of
θ < α, the time of arrival from the loudspeaker position follows
(1). When θ ≥ α, the time of arrival consists of the distance from
the loudspeaker to the tangent point p, followed by the circle bow
starting from p to the ear position. The time of arrival follows the
expression:

t =

d
2
(θ − α) +

√
r2 − d2

4

c
. (8)

The two expressions (1) and (8) are shown in Fig. 6(a). By looking
at the first derivative of the obtained waveform, one can observe in
Fig. 6(b) that the slope does not increase when considering the
head shadowing. It stays constant for angles θ ≥ α. Therefore,
considering the head shadowing does not modify (7).

This model is nevertheless unsatisfactory because of the cusp
in Fig. 6(a) due to the simplistic diffraction model. A more accu-
rate model is given by [11]. The HRTFs are expressed as:

H(ρ, µ, θ) = − ρ

µ
e
−iµρΨ (9)
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with Ψ(ρ, µ, θ) =
∑

∞

m=0(2m + 1)Pm(cos θ)hm(µρ)
h′

m
(µ)

, µ a nor-
malized temporal frequency, Pm the Legendre polynomial of de-
gree m and hm the mth order spherical Hankel function. Taking
the discrete Fourier series of (9) we also observe a bow-tie spec-
trum satisfying (7), as shown in Fig. 7(a). The obtained spectrum
of measured HRTFs [12] sampled every 5◦ in an anechoic cham-
ber is shown in Fig. 7(b). We can observe that (7) is satisfied as
with a spacing of 5◦ almost no aliasing is noticed at CD sampling
frequency (44.1 kHz).

0 100 200 300
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
x 10

−3

T
im

e 
[s

]

Angles

(a)

0 100 200 300
−3

−2

−1

0

1

2

3
x 10

−4

Angles

D
er

iv
at

iv
e

(b)

Fig. 6. (a) Time of arrival with (in full lines) or without (in dashed
lines) shadowing in function of angle of the loudspeaker.(b) First
derivative of the time of arrival with (in full lines) or without (in
dashed lines) shadowing.

(a) (b)

Fig. 7. 2D Spectra of HRTF (a) using a diffraction model. (b)
using measured data.

3.2. Interpolation results

We have applied the same technique as presented in Section 2.4
for different data sets. We used 36 measurements spaced by 10◦

to interpolate the HRTFs by a factor 2. The interpolated measure-
ments were compared with the original 72 measurements and the
MSE was calculated. Using a spacing of 10◦, we can interpolate
the HRTFs up to 10.8 kHz as follows from (7). The first data set
was a simple simulation in free field with a set of loudspeakers
and a microphone copying the real setup of HRTFs measurements
without considering the head shadowing. The results of interpola-
tion are shown in full lines in Fig. 8(a). The same simulation was
carried out using the model of HRTFs from [11] and the results are
shown in dotted lines in Fig. 8(a). We see that these two experi-
ments show a MSE varying from −35 to −65 dB. Finally using
the experimental HRTFs from [12], the MSE was slightly higher
but still of the order of −40 dB as can be seen in Fig. 8(b).

4. CONCLUSION

In this paper, we have studied the sampling of soundfields using
circular microphone arrays. We have shown that the 2D-FT asso-
ciated to the soundfield has a spectrum that has a bow-tie shape.
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Fig. 8. Interpolation MSE. (a) Comparison of MSE for interpo-
lation of simulated HRTFs with (in dotted lines) or without head
shadowing (in full lines). (b) MSE on the interpolation of the mea-
sured HRTFs.

We have explained how reconstruction of the soundfield at all pos-
sible positions on the array is possible using a finite number of
measurements. The proposed technique has been applied with suc-
cess to the problem of interpolation of HRTFs where we computed
the necessary azimuthal angular sampling frequency necessary to
reconstruct the HRTFs up to some temporal frequency.
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