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ABSTRACT

A fast iterative algorithm, with computation based on the fast Fou-
rier transform (FFT), is presented. It can be used to control a
soundfield at several control points with a loudspeaker array from
multiple reference signals. It designs an equalizer able to invert
long FIR filters and which achieves better performance than tradi-
tionnal FFT-based deconvolution methods with an equal number
of coefficients in the inverse filters.

1. INTRODUCTION

Multichannel equalization is used in sound reproduction systems
such as transaural sytems, ambisonics, or WFS, in order to im-
prove the spatio-temporal quality of sound reproduction. Miyoshi
and al. first introduced the MINT theorem [1] in order to have a
full control of sound at several points. But, like acoustic echo con-
trol [2], multichannel equalization is an application of very high
order filters, and the resolution of the subjacent problem prevents
a direct inversion as recommended by Miyoshi due to the size of
the resultant matrix. Kirkeby and al. proposed a fast deconvo-
lution method [3], able to inverse long electroacoustic responses.
They use a regularization parameter, weighting the effort term of
the solution, in order to limit the temporal extent of inverse filters
so that linear convolutions could be correctly approximated with
circular ones.

In this paper, iterative algorithms are presented for the purpose
of multichannel equalization. They are able to invert long multi-
ple electroacoustic impulse responses, and achieve better results
than traditionnal methods with the same number of coefficients
in the inverse filters. The global aim is to minimize a cost func-
tion expressed in the time domain but computations of the update
equalizer are more efficiently done in the frequency domain, using
circular convolutions (FFT) to calculate linear ones. In section 2,
the multichannel equalization problem and the notations used are
introduced. In section 3, two different algorithms are presented,
and in section 4, results are presented in the case of the cross-talk
cancellation problem and compared with other methods. Finally,
section 5 suggests some conclusions.

2. CONTEXT AND OBJECTIVES

2.1. Problem description and variable definitions

Figure 1 illustrates the discrete-time multichannel equalization pro-
blem encountered in generalized transaural reproduction systems
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[4]. The objective of the equalization is to determine the loud-
speaker array inputs y(n) such that the sound pressure is con-
trolled at multiple positions in space. In order to achieve this objec-
tive, I desired signals s(n) are computed from K recorded signals
x (n) described by the extrapolation relation :
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When K = 1, x(n) represents the temporal signature of a point
source, whereas the extrapolation operator A characterizes the prop-
agation in an enclosed space from the source to the I control points.
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Fig. 1. Multichannel discrete-time equalization problem

The multiple input multiple output (MIMO) system H de-
scribes the electroacoustic transfer functions. It relates the J trans-
ducers signals to the I reproduced signals at the control points :
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ŝI(n)

1
CA=

2
64

h11(n) . . . h1J (n)
...

. . .
...

hI1(n) . . . hIJ (n)

3
75∗

0
B@

y1(n)
...

yJ (n)

1
CA (2)

Thus hij(n) is the electroacoustic impulse response between the
transducer j and the control point i.

The MIMO system G is the equalizer. It computes the input
signals of the loudspeaker array from the K reference signals :
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Thus gjk(n) is the impulse response of the equalizer between the
reference signal k and the loudspeaker input signal j.

Using equation 3, 2 and 1, it is easily shown that the equalizer
has to achieve HG = A, independently of the K reference signals
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[4]. The problem can then be decomposed into K independent
subproblems [5] :
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2.2. Numerical resolution

Each above subproblem is of infinite dimension and some approx-
imations must be made to solve it numerically. Each impulse re-
sponse hij(n), gjk(n), and aik(n) will be modeled by a FIR filter
[2] of Lh, Lg , and N = Lh + Lg − 1 (the length of the discrete
convolution of hij and gjk) coefficients. In the following, we use
the notations :
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Thus, Hij ·g
jk

computes the discrete convolution between the two

finite sequences hij and gjk. The resulting problem is of finite di-
mension and can be solved numerically. With the above notations,
it can be synthesized by the relation :

Hg
k

= ak, ∀k ∈ [1, . . . , K] (6)

Relation 6 describes a system of IN equations with JLg unknowns.
It is well known [5] that the solution which minimizes the quadratic
error :

g
kopt

= H
†
ak (7)

where H
† is the pseudo-inverse of the matrix H. This solution

is also of minimal effort in the case in which the problem is sub-
determined, that is when IN < JLg .Unfortunately, the practi-
cal dimensions of H prevent a direct pseudo-inversion. Iterative
algorithms represent an alternative solution to a direct pseudo-
inversion since they converge to the optimal solution without need-
ing the inversion of H.

3. ITERATIVE ALGORITHMS

At each iteration of the algorithm, the equalizer g
k

is updated in
order to decrease a cost function. Generally, the mean-squared-
error (MSE) is used [6] :

Jk

“
g

k

”
= ‖ak − Hg

k
‖2 (8)

In this paper, two algorithms are studied : the steepest-descent
and the approximative Gauss-Newton algorithms [6]. In the fol-
lowing, the notation diag(m) transforms the vector m into a square
matrix with its elements on the diagonal, and the notation diagn(M)
applied to a matrix is a block matrix with n matrix M on its diag-
onal.

The complexity of these algorithms can largely be decreased
if the required computations are done in the frequency domain
[7]. For each step of these algorithms, only linear convolutions
of two finite discrete sequences have to be computed. This can
be done more efficiently in the frequency domain using FFT al-
gorithms. For instance, consider the convolution of hij(n) and
gjk(n), which is accomplished in the time domain by the matrix
operation Hijg

jk
. This can also be done in the frequency domain

by zero-padding the two sequences in order to have N elements,
and by computing the circular convolution of the two sequences
by FFT. The matrix operation can be written as :

Hijg
jk

= F−1diag
`
FMhh ij

´
FMgg

jk

where F [N×N] denotes the discrete Fourier transform matrix,
Mh the zero-padding matrix for the sequences h ij , and Mg , the
zero-padding matrix for the sequences g

jk
[7]. The following ma-

trix identity is deduced :

Hij = F−1diag
`
FMhh ij

´
FMg

This identity can be generalized to the matrix H :

H = F−1

I HFJM (9)

with FI = diagI (F), (H)
i,j

= diag
`
FMhh ij

´
,

FJ = diagJ (M), and M = diagJ (Mg).

3.1. Steepest Descent Algorithm

In this algorithm, the equalizer g
k

is updated in the opposite di-
rection of the gradient of the cost function[6] :

g
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The iteration step must fullfill the condition µ < 2/λmax where
λmax is the largest eigenvalue of the autocorrelation matrix H

T
H

[6]. As this value is unknown, one has to proceed by successive
trials in order to assure convergence of this algorithm. This pro-
cedure can be automated using an optimal step version of the al-
gorithm, in which the step is chosen in order to minimize the cost
function in the next iteration [6]. This operation is synthesized by
the following equation :

µ(m) =
n
µ/∇µJk

“
g

k

”
=0

o
⇐⇒ µ(m)=

eT
k (m)ck(m)

cT
k (m)ck(m)

with : ck(m) = HH
Tek(m)

(11)

The details of the computation are summarized in Table 1.
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Initialization
Frequency Direct Matrix

(H)
i,j

= diag
`
FMhh ij

´
Reference Vector

ak = FIak

Iteration
Estimated vector

âk(m) = HFJMg
k
(m)

Error vector
ek(m) = ak(m) − âk(m)

Gradient vector
dk(m) = MTF−1

J H
H

ek(m)
Normal Version Optimal Step Version

Optimal Step Vector
ck(m) =
HFJMdk(m)

Update Iteration Step

g
k
(m+1)=g

k
(m)+µdk(m) µ(m) =

e
H
k (m)ck(m)

cH
k (m)ck(m)
Update

g
k
(m+1)=g

k
(m)+µ(m)dk(m)

Table 1. Steepest Descent Algorithms

3.2. Approximated Gauss-Newton Algorithm

The opposite direction of the gradient of the cost function is not
the optimal direction for updating the equalizer. To increase speed
convergence, the best direction for updating is obtained by multi-
plying the gradient vector with the inverse of the Hessian matrix`
H

T
H

´−1

[6]. Admittedly, if the computation of the inverse Hes-
sian matrix was feasible, it would be better to solve directly the
problem without an iterative algorithm. But the inverse Hessian
matrix can only be approximated, using the frequential Hessian
matrix H

H
H. Hence, the structure of the matrix

`
H

H
H + λId

´
,

constituted of blocks of diagonal matrix, enables fast algorithms
for its inversion. The parameter λ is used for regularization. Fi-
nally, the approximated temporal inverse Hessian matrix W used
here is :“

H
T
H

”−1

≈ W = MTF−1

J

“
H

H
H + λId

”−1

FJM (12)

The resulting algorithm is the approximated Gauss-Newton algo-
rithm, with update equation :

g
k
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k
(m) −

µ

2
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g
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”
(13)

The corresponding optimal step version of this algorithm is
still obtained by using equation 11 with :

ck(m) = HWH
T
ek(m)

The successive steps of this algorithm are summarized in Ta-
ble 2.

It can be noted that a better candidate than the null equalizer
can be chosen for the equalizer initialization for the two algorithms
:

g
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= MTF−1

J

“
H

H
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”−1

H
H

ak (14)

This initial equalizer is the one used in traditionnal FFT-based
methods using regularization [3].
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`
H

H
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´−1

Iteration
Estimated vector

âk(m) = HFJMg
k
(m)

Error vector
ek(m) = ak(m) − âk(m)

Gradient vector
dk(m) = MTF−1

J H
H

ek(m)
Modified Gradient vector

bk(m) = MTF−1

J WFJMdk(m)
Normal Version Optimal Step Version

Optimal Step Vector
ck(m) = HFJMbk(m)

Update Iteration Step

g
k
(m+1)=g

k
(m)+µbk(m) µ(m) =

e
H
k (m)ck(m)

cH
k (m)ck(m)
Update

g
k
(m+1)=g

k
(m)+µ(m)bk(m)

Table 2. Approximated Gauss-Newton Algorithms

4. RESULTS

In this section, results are presented in the case of typical transaural
systems (I = J = K = 2). The equalization problem is known as
cross-talk cancellation. The equalizer aims to compensate for both
the room and the the loudspeakers responses, and also to cancel the
cross-talk from the left loudspeaker to the right ear and vice-versa.

The direct transfert matrix H has been measured by sweep
techniques [8]. The corresponding responses are represented on
figure 2. The responses have been truncated to Lh = 8192 sam-
ples. The length of each inverse filter has been fixed to Lg = 8193
coefficients so that the convolution of the equalizer and the direct
transfer matrix is of length 16384 samples.
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Fig. 2. Direct Transfert Matrix
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Results of traditionnal FFT-based methods, synthesized by the
equalizer of equation 14 are depicted on figure 3. The best results
have been obtained with λ = 10−2 for the regularization param-
eter. Nevertheless pre-echos and post-echos are visible (presence
of secondary peaks before and after the main peak, approximately
-35dB level). These artifacts are present because regularization
isn’t sufficient to limit the temporal extent of the inverse filters and
then cannot cope with the time aliasing due to circular convolu-
tions.
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Fig. 3. Results with traditionnal equalization methods

Better performance could be achieved by using more coeffi-
cients in the inverse filters, or by using the iterative algorithms
presented in this paper. Time aliasing doesn’t occur in the inverse
filter because linear convolutions are properly computed in the fre-
quency domain, using FFT algorithms with correctly zero-padded
sequences. The corrected system is presented on figure 4, after
the convergence of the algorithm. Instead of secondary peaks, a
quasi-constant noise reconstruction, approximatively -50 dB level,
is visible.
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Fig. 4. Results after convergence of the algorithm

Concerning the performance of these algorithms, the MSE is
represented on figure 5 for the optimal step gradient algorithm and

for several values of λ for the optimal step approximated Gauss-
Newton algorithm. It is seen that the accuracy of the obtained
solution is better when the regularization parameter is low. On
the other hand, the initial convergence speed is better when the
regularization parameter is high. λ = 10−2 seems to be a good
tradeoff between speed convergence and accuracy of the solution.
Note that this value corresponds to the one used in the tradition-
nal deconvolution method. Moreover, it is seen that approximated
Gauss-Newton algorithm outperforms gradient algorithm concern-
ing both speed convergence and accuracy of the solution.
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5. CONCLUSION

Iterative multichannel equalization algorithms have been presented
in this paper. They enable the inversion of long multiple electroa-
coustic impulse responses. Results have been given in the case
of classical transaural applications and demonstrate the efficiency
and accuracy of our approach, which is very suitable when optimal
performance is required with a moderate number of coefficients in
the inverse filters. It is important to emphasize that the proposed
algorithms apply for any number of control points and/or loud-
speakers.
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