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ABSTRACT

In this paper, a new method of direction of arrival (D.O.A.)
estimation with environmental noise, whose spatial correla-
tion matrix is singular, is proposed. In D.O.A. estimation,
identification of signal and noise subspaces plays a very im-
portant role. The identification process can be achieved by
(generalized) eigenvalue decomposition of the spatial corre-
lation matrix of observations (with respect to that of noise),
if these spatial correlation matrices are non-singular. How-
ever, these mathematical tools can not be applied to the
problems in which the spatial correlation matrices are sin-
gular. The main idea of this work deeply depends on iden-
tification of proper and improper eigenvectors of the spa-
tial correlation matrix of noise with respect to that of obser-
vations. The results of computer simulations are also pre-
sented to verify the efficacy of the proposed method.

1. INTRODUCTION

In D.O.A. estimation, represented by MUSIC [1] and ES-
PRIT [2], identification of signal and noise subspaces is es-
sential. It is well known that when noise is spatially white,
we can easily identify signal and noise subspaces by us-
ing eigenvalue decomposition of the spatial correlation ma-
trix of observations, and when noise is spatially colored,
we can also identify these subspaces by using generalized
eigenvalue decomposition of the spatial correlation matrix
of observations with respect to that of noise, if these cor-
relation matrices are non-singular. However, these mathe-
matical tools can not be applied to the problems that have
singular correlation matrices.

In this paper, we propose a method of D.O.A. estima-
tion that can be applied to the problems that have singular
correlation matrices. The main idea of our method depends
on identification of proper and improper eigenspaces [3] of
the spatial correlation matrix of noise with respect to that of
observations. The results of computer simulations are also
presented to verify the efficacy of our method.
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2. PROBLEM FORMULATION

Let n, m (< n), t, and ω be the number of observations
(the number of microphones), the number of sound sources,
frame and frequency indexes in short time Fourier domain.
We assume that the observation vector x(ω, t) ∈ Cn is
modeled as follows:

x(ω, t) = A(ω)s(ω, t) + n(ω, t), (1)

where s(ω, t) ∈ Cm, A(ω) ∈ Cn×m, and n(ω, t) ∈ Cn

denote the sound source vector, the transfer function be-
tween sound sources and microphones, and noise vector.
We also assume that s(ω, t) and n(ω, t) are zero-mean ran-
dom variables and that they are mutually uncorrelated. Here-
after, we omit (ω, t) in notations, since there is no fear of
confusion.

The objective of D.O.A. estimation is to identify the di-
rection where the sound sources exist, incorporating identi-
fication of signal and noise subspaces by using the series of
observations x and statistical properties of n.

3. SUMMARY OF D.O.A. ESTIMATION

In this section, we summarize D.O.A. estimation, especially
in cases that the spatial correlation matrix of noise is non-
singular.

Let Rs and Q be the spatial correlation matrices of the
sound sources s and noise n written by

E[ss∗] = Rs, E[nn∗] = Q, (2)

then, the correlation matrix of observations x is written by

Rx = E[xx∗] = R + Q, (3)

where R = ARsA∗. We assume rank(A) = rank(Rs) =
m for all following discussions.

When Q = σ2In (including the case of σ2 = 0) is satis-
fied, identification of signal and noise subspaces is achieved
by eigenvalue decomposition of Rx written by

Rx = P1(Λ1 + σ2In)P ∗
1 , (4)
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where In, P1 and Λ1 denote the identity matrix of degree n,
the unitary matrix consisting of the eigenvectors of Rx and
the diagonal matrix consisting of the eigenvalues of Rx. In
this case, because of the non-negative definiteness of R, the
signal subspace is spanned by the eigenvectors correspond-
ing to the eigenvalues larger than σ2, and the noise subspace
is spanned by those corresponding to the eigenvalues equal
to σ2.

When Q is non-singular matrix which may be non-diag-
onal, we consider

y = Q−1/2x. (5)

The spatial correlation matrix of y is written by

Ry = E[yy∗] = Q−1/2RxQ−1/2

= Q−1/2RQ−1/2 + In.
(6)

Here, let
Q−1/2RQ−1/2 = P2Λ2P

∗
2 (7)

be the eigenvalue decomposition of Q−1/2RQ−1/2, then
Eq.(6) is reduced to

Rx(Q−1/2P2) = Q(Q−1/2P2)(Λ2 + In). (8)

Eq.(8) means that the diagonal elements of (Λ2 + In) and
the column vectors of (Q−1/2P2) denote the eigenvalues
and the eigenvectors of the generalized eigenvalue problem
written by

Rxu = λQu. (9)

Therefore, the signal subspace is spanned by the eigenvec-
tors corresponding to the eigenvalues larger than 1, and the
noise subspace is spanned by the eigenvectors correspond-
ing to the eigenvalue 1 in this case. Note that Eq.(8) can be
transformed to

Q(Q−1/2P2) = Rx(Q−1/2P2)(Λ2 + In)−1. (10)

Eq.(10) means that the diagonal elements of (Λ2 + In)−1

and the column vectors of (Q−1/2P2) denote the eigenval-
ues and the eigenvectors of the generalized eigenvalue prob-
lem written by

Qu = λRxu. (11)

In terms of Eq.(10), the signal subspace is spanned by the
eigenvectors corresponding to eigenvalues smaller than 1.

Let X1 ∈ Cn×(n−m) be the matrix consisting of the
eigenvectors that span the noise subspace, then D.O.A. es-
timation using MUSIC (for instance) is reduced to finding
the θ that gives a peak of the criterion

J1(θ) =
a(θ)∗a(θ)

a(θ)∗X1X∗
1a(θ)

, (12)

where a(θ) denotes a weight vector for microphones, that
is fixed by the direction θ.

4. D.O.A. ESTIMATION FOR SINGULAR
CORRELATION MATRICES

As is mentioned in the previous section, when environmen-
tal noise exists, identification of signal and noise subspaces
deeply depends on non-singularity of the spatial correlation
matrix of noise. Therefore, when the spatial correlation ma-
trix of noise is singular, we can not use a mathematical tool
such as generalized eigenvalue decomposition for identifi-
cation of signal and noise subspaces. In this section, we
show that these subspaces can be identified by proper and
improper eigenspaces [3], even if the spatial correlation ma-
trices are singular. We also apply the method of identifica-
tion of the subspaces to D.O.A. estimation using MUSIC.

Firstly, we introduce mathematical tools which play im-
portant roles in the following discussions.

Theorem 1 Let A and B be n.n.d. Hermitian matrices of
degree n, then there exists a non-singular matrix T that
makes T ∗BT and T ∗AT be diagonal matrices [3].

Note that T ∗BT can be written by the following matrix
of degree n, if rank(B) = r is satisfied [3].

T ∗BT = In,r ≡
[

Ir O
O O

]
(13)

Definition 1 Let A and B be a Hermitian matrix and an
n.n.d. Hermitian matrix. The scalar λ and the vector w are
called “proper eigenvalue” and “proper eigenvector” of A
with respect to B, when

Aw = λBw, Bw �= 0 (14)

holds. On the other hand the vector w is called “improper
eigenvector”, when

Aw = Bw = 0

holds [3].

On the basis of Theorem 1, let T be the non-singular
matrix that makes T ∗RT and T ∗QT be diagonal matrices,
then,

Q = (T ∗)−1In,rT
−1, R = (T ∗)−1Λ3T

−1

Rx = (T ∗)−1(Λ3 + In,r)T−1 (15)

holds with rank(Q) = r, where Λ3 denotes a diagonal ma-
trix.

Theorem 2 Let In,r and Λ3 be the matrices described in
Eq.(15), then,

R(In,r) ⊂ R(Λ3 + In,r) (16)

holds.
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Proof
Let R = P4Λ4P

∗
4 be the eigenvalue decomposition of

R, then
P4Λ4P

∗
4 = (T ∗)−1(Λ3)T−1

holds, and it can be transformed to

Λ3 = T ∗P4Λ4P
∗
4 T = (Λ1/2

4 P ∗
4 T )∗(Λ1/2

4 P ∗
4 T ), (17)

since diagonal elements of Λ4 are real non-negative values.
On the basis of Eq.(17), it is concluded that the diagonal
elements of Λ3 are also non-negative values, since the right-
hand side of Eq.(17) is obviously an n.n.d. matrix.

If a vector x belongs to the null space of (Λ3 + In,r),
written by N (Λ3 + In,r), then

x∗Λ3x = 0, x∗In,rx = 0,

holds, since Λ3 is a non-negative diagonal matrix. It imme-
diately follows that (In,rx)∗(In,rx) = 0, which concludes

N (Λ3 + In,r) ⊂ N (In,r),

that is identical to Eq.(16). �

From Eq.(15) and Theorem 2, it immediately follows
that

QT = RxT (Λ3 + In,r)+In,r (18)

holds. Eq.(18) gives the solution of the proper (and im-
proper) eigenvalue problem written by

Qw = λRxw, Rxw �= 0.

Therefore, the column vector of T written by ti, that sat-
isfies Rxti = 0, corresponds to the improper eigenvector
of Q with respect to Rx, since Qti = 0 is also satisfied
that is easily derived from R(Q) ⊂ R(Rx). On the other
hand, ti, that does not satisfy Rxti = 0, corresponds to
the proper eigenvectors of Q with respect to Rx, and the
corresponding diagonal elements of (Λ3 + In,r)+In,r rep-
resent the proper eigenvalues of Q with respect to Rx. The
proper eigenvectors, corresponding to the proper eigenval-
ues 1, span the noise subspace, and those, corresponding to
the proper eigenvalues smaller than 1, span the signal sub-
space.

Identification of signal and noise subspaces in this sit-
uation seems to be able to be reduced to the generalized
eigenvalue problem written by

Rxu = λ(TT ∗)−1u, (19)

since Eq.(15) is easily transformed to

RxT = (TT ∗)−1T (Λ3 + In,r). (20)

However, we should not use the solution of Eq.(20), since
we can not discriminate the eigenvector corresponding to
the signal subspace from that corresponding to the noise
subspace, when the diagonal element of (Λ3 + In,r) is 1.

Let X2 be the matrix consisting of the improper eigen-
vectors and proper eigenvectors that span the noise sub-
space, then D.O.A. estimation using MUSIC is reduced to
finding the θ that gives a peak of the criterion

J2(θ) =
a(θ)∗a(θ)

a(θ)∗X2X∗
2a(θ)

, (21)

where a(θ) denotes the same vector used in the previous
section. Note that we use not only the proper eigenvec-
tors corresponding to the noise subspace but also improper
eigenvectors for constructing the matrix X2, so that, the cri-
terion J2(θ) does not have peaks at the subspace that neither
the signal nor noise exists.

5. COMPUTER SIMULATIONS

In this section, we show the results of computer simulations
in order to verify the efficacy of the proposed method. Fig-
ure 1 shows the layout of microphones, a sound source, and
an environmental noise source. We assume that the signal
and the noise sources are far enough from the microphones.
The sampling rate is 32kHz, the sound source is written by

s(t) = sin(2πft), (f = 500Hz),

and Gaussian white noise, whose variances are σ2 = 1.0,
100.0, are adopted for the noise. Note that Q is singu-
lar, since the same noise is observed by all microphones.
Although the conditions for the noise might be so special,
these conditions make the work of our method clear. We in-
vestigated the performance of MUSIC using the method of
identification of signal and noise subspaces based on nor-
mal eigenvalue decomposition (as the competitor) and our
method. Note that we can not adopt generalized eigenvalue
decomposition for the competitor, since it can not be applied
to this problem that has a singular noise correlation matrix.

Signal

20cm 20cm 20cm

30

Noise

Fig. 1. Layout of microphones, sound sources, and noise.
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Fig. 2. Results of D.O.A. estimation by normal eigenvalue
decomposition (σ2 = 1.0).
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Fig. 3. Results of D.O.A. estimation by the proposed
method (σ2 = 1.0).

5.1. Results for σ2 = 1.0

Figures 2 and 3 show the results of D.O.A. estimation at
500Hz using the methods of identification of signal and
noise subspaces based on normal eigenvalue decomposition
and the proposed method in the case of σ2 = 1.0.

Under these conditions, the eigenvector corresponding
to the maximum eigenvalue in normal eigenvalue decom-
position of the spatial correlation matrix of observations, is
correctly spanning the signal subspace. Therefore, both of
methods correctly estimated the direction of arrival of the
sound source.

5.2. Results for σ2 = 100.0

Figures 4 and 5 show the results as the same with the previ-
ous subsection in the case of σ2 = 100.0.

Under these conditions, the eigenvector corresponding
to the maximum eigenvalue in normal eigenvalue decom-
position of the spatial correlation matrix of observations,
catches the noise subspace, since the variance of noise is
comparatively large. Therefore, it is confirmed that nor-
mal eigenvalue decomposition is useless in such conditions,
while the proposed method works well.
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Fig. 4. Results of D.O.A. estimation by normal eigenvalue
decomposition (σ2 = 100.0).
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Fig. 5. Results of D.O.A. estimation by the proposed
method (σ2 = 100.0).

6. CONCLUSION

In this paper, we proposed a method of D.O.A. estimation
that can be applied to the problems that have singular spa-
tial correlation matrices, incorporating proper and improper
eigenspaces of the spatial correlation matrix of noise with
respect to that of observations. The efficacy of the proposed
method is confirmed by the results of computer simulations.
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