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ABSTRACT

We propose a method for the recognition of musical instruments

in polyphonic music excerpted from commercial recordings. By

exploiting some cues on the common structures of musical ensem-

bles, we show that it is possible to recognize up to 4 instruments

playing concurrently. The system associates a hierarchical classi-

fication tree with a class-pairwise feature selection technique and

Gaussian Mixture Models to discriminate possible combinations

of instruments. Successful identification is achieved over short-

time windows, enabling the system to be employed for segmenta-

tion purposes.

1. INTRODUCTION

The scope of the present work is targeted on machine recogni-

tion of musical instruments in a polyphonic context. This issue

has been hardly addressed as most studies were dedicated to the

recognition of musical instruments playing isolated notes [1, 2].

Fewer contributions were concerned with the recognition on solo

musical phrases involving a single instrument executing any musi-

cal score [3, 4]. Few attempts were made on a polyphonic content

where many instruments play simultaneously. Given the complex-

ity of this problem, a number of restrictions were considered in

such studies either regarding the number of instruments to be rec-

ognized, the nature of music, or the musical notes played. In fact,

recognition was often related to a source separation task requiring

the knowledge or estimation of the pitches of the different notes

[5, 6, 7]. Then, limitations arise due to the difficulty to extract

the fundamental frequencies in the multi-pitch case, especially for

octave-related notes. Moreover, such studies processed artificially

mixed musical elements such as notes, chords or melodies. Using

realistic musical recordings, Eggink & Brown proposed a system

based on a missing feature approach [8] capable of identifying 2

instruments playing simultaneously. More recently, the same au-

thors presented a system recognizing a solo instrument in the pres-

ence of musical accompaniment by recurring to the extraction of

the most prominent fundamental frequencies in the audio signals

[9].

In this paper, we introduce a multi-instrument recognition scheme

processing real-world music, based on a priori knowledge of the

musical context. Our proposal does not require any pitch-detection

or separation operations. We show that it is possible to recognize

up to 4 instruments playing concurrently on the basis of realistic

musical hypotheses. We choose a piano jazz quartet ensemble to

illustrate the performance of the proposed methodology.

Our approach follows a hierarchical classification scheme where a

number of classes to be recognized can be grouped together at high
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levels of the suggested taxonomy. These classes consist of particu-

lar combinations of instruments that are deduced from the musical

genre. We show through experimental work that high recognition

accuracy can be achieved with up to 4 instruments playing at the

same time.

The outline of the paper is the following. We first present the

recognition system architecture. Subsequently, we give a descrip-

tion of the signal processing features used and our algorithm for

selecting the most relevant features. We then briefly describe the

one vs one GMM classifier employed. Finally, we proceed to the

experimental validation and suggest some conclusions.

2. SYSTEM ARCHITECTURE

2.1. Music instrumentation cues

Choosing a specific music instrumentation for a composition is

one of the degrees of freedom of a composer. If in contemporary

music (especially in classical and jazz) a large variety of instru-

mentations are used, it is clear that most trio and quartet compo-

sitions use typical instrumentations traditionally related to some

musical genre. For example, typical jazz trios are composed of

piano or guitar, double bass and drums and typical quartets in-

volve piano or guitar, double bass, drums and a wind instrument

or a singer. In a vast majority of musical genres, each instrument,

or group of instruments, has a typical role related to rhythm, har-

mony or melody. Not surprisingly, a number of studies in Audio

Scene Analysis of modern music aim at extracting sub-symbolic

representations such as the hierarchical beat structure and the drum

patterns (related to the rhythmic part), the chord changes and bass

line (related to harmony) and the melody (see [10] for example).

When jazz/pop ensembles of 4 or less instruments are considered,

namely solos to quartets, rhythm is often carried out by percussive

instruments (drums or percussions) and/or a bass instrument (such

as double bass) while melody or second line is often played by a

monophonic instrument (sax, trumpet, voice, etc.). Polyphonic in-

struments such as the piano or the guitar have more diverse roles

since they can be involved in the harmony, rhythm or melody parts.

2.2. The taxonomy

Our approach consists in defining classes inspired by the possible

instrumentations related to the musical genre. These classes are

instruments or groups of instruments possibly playing simultane-

ously at certain parts of a musical piece. The number of possible

combinations is reduced by building super-classes consisting of

unions of classes having similar acoustic features. They constitute

the top-level of the hierarchical classification scheme depicted in

figure 1. The scheme is given for the jazz example. Nevertheless,
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Fig. 1. An example of taxonomy for the recognition of musical instruments in jazz piano ensembles from solos to quartets. Dr :drums,
Bs :double bass, M : Monopitched instrument, Pn :piano.

it is believed that the suggested methodology is not restricted to the

presented example. The only constraint is that the genre of the mu-

sic to be processed is known. Such an indication can be obtained

in a first stage either by exploiting the textual metada accompany-

ing the audio or by using a musical genre recognition system. In

fact, once the genre is known, one can easily adapt the alternative

instrument combinations corresponding to each super-class by ex-

ploiting information on the possible instrumentations found in real

music.

The classification is performed hierarchically in the sense that a

given test segment is first classified among the top-level classes,

then it is determined more precisely (when needed) in the lower-

level. For example, if a test segment involves double bass, drums

and trumpet, then it is first identified as BsDrM and subsequently

as BsDrTr, where Bs stands for double bass, Dr for drums, M for

a wind instrument (sax or trumpet) and Tr is Trumpet.

In the following, we describe the aspects related to the signal pro-

cessing features and classifiers used within this architecture.

3. ON FEATURES AND THEIR SELECTION

There exists no widely shared consensus about an optimal feature

set dedicated to the instrument recognition task. One of the main

difficulties is then to choose among various descriptors proposed

in the literature [1, 2, 4]. For this purpose, the so-called IRMFSP

(Inertia Ratio Maximization with Feature Space Projection) is ex-

ploited in order to fetch the most relevant features from a very

wide initial set of potentially useful ones. The particularity of our

approach is that IRMFSP is performed in a class-pairwise manner

[4].

3.1. The whole feature set

The classical features considered in this work are briefly described

hereafter, keeping in mind that they were chosen for the robustness

of their extraction from polyphonic music recordings.

The autocorrelation coefficients, temporal statistics obtained from

the first 4 statistical moments and the Zero Crossing Rates charac-

terize the waveform in the time domain.

The MFCC (Mel-Frequency Cepstral Coefficients) tend to rep-

resent the spectral envelope and its variations over successive frames

(first and second derivatives also used).

Spectral Centroı̈d, Spectral Width, Spectral Asymmetry and

Spectral Flatness [11] and their time derivatives describe the spec-

tral statistic distribution and its evolution over time. The MPEG-7

Audio Spectrum Flatness [12] and the derivatives of the constant-

Q coefficients are added. Finally, the frequency below which 99%

of the spectral energy is accounted, the Frequency cutoff, is com-

puted.

Since pitch estimation has to be avoided, a new feature set

is derived to roughly evaluate the power distribution among the

different harmonics [4]. The log energy of each subband of an oc-

tave triangular filter bank is computed leading to the OBSI (Octave

Band Signal Intensities) vector. The vector OBSIR (OBSI Ratios)

is then obtained by forming the quotient of each subband intensity

to its previous.

3.2. Feature selection

The feature selection is performed class-pairwise, leading to an

optimized subset of features for each possible pair of classes. The

subsequent classification is processed in a one vs one scheme. This

approach has proven to be more successful than the classic one

where a single set of attributes is used for all classes [4].

Several techniques are available to perform the selection task

as the family of Sequential Feature Search Techniques or Genetic

Algorithms [13]. In this work, we retained an intuitive approach,

the IRMFSP, which has been found successful in a musical pro-

cessing context.

The IRMFSP feature selection is made iteratively with the aim

to derive an optimal subset of d features amongst D, the total num-

ber of features. At each step i, a subset Xi of i features is built by

appending an additional feature to the previously selected subset

Xi−1. Let K be the number of classes, Nk the number of feature

vectors accounting for the training data from class k and N the

total number of feature vectors (N =
∑K

k=1 Nk).

Let xi,nk be the nk
th feature vector (of dimension i) from

class k, mi,k and mi be respectively the mean of the vectors of

the class k (xi,nk )1≤nk≤Nk
and the mean of all training vectors

(xi,nk )1≤nk≤Nk; 1≤k≤K . Features are selected based on the ratio

ri (also known as the Fisher discriminant) of the Between-class

inertia Bi to the ”average radius” of the scatter of all classes Ri

defined as :

ri =
Bi

Ri
=

∑K
k=1

Nk
N

‖mi,k − mi‖
∑K

k=1

(
1

Nk

∑Nk
nk=1 ‖xi,nk − mi,k‖

) (1)

The idea behind is to select features that enable good separation

between classes with respect to the within-class spreads. The se-

lected additional feature corresponds to the highest ratio ri. Using

this criterion may result in redundant feature subsets wherein the

same signal attributes are embedded in a number of features still

entailing high ri-values. Then the algorithm is modified as in [14]

to take into account the non-redundancy constraint by introduc-

ing an orthogonalization step at each feature selection iteration. In

summary, at each iteration,

• the ratio ri is maximized yielding a new feature subset Xi,
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• the feature space spanned by all observations is made or-

thogonal to Xi.

The algorithm stops when the ratio rd measured at iteration

d gets much smaller than r1, i.e. when
rd
r1

< ε for a chosen ε,

which means that the gain brought by the last selected feature has

become non-significant. This provides a convenient means for im-

plicitly selecting the number of useful features when the size of

the feature subset to be selected is not a constraint.

The process of selecting the best features for discriminating be-

tween any possible pair of classes using IRMFSP will be referred

to as CK
2 -IRMFSP. Note that there are as many feature subsets

selected as class pairs and their sizes are not necessarily equal.

Whenever two classes can be easily distinguished, the number of

needed features is expected to be smaller.

4. ON CLASSIFICATION

The classification is performed through a one vs one scheme us-

ing Gaussian Mixture Models. As the GMM has been extensively

used for various classification tasks since their application to text-

independent speaker recognition (see [15] for example), only its

pairwise utilization is here discussed.

As many GMM classifiers as instrument pairs are built based on

different feature subsets found thanks to CK
2 -IRMFSP. Classifica-

tion is then performed using a ”majority vote” rule applied over all

possible class pairs and over L consecutive observations in time.

For each pair of classes {Ωi, Ωj}, a positive vote is counted for

the class Ωi at time t if

p(xt|Ωi) > p(xt|Ωj) (2)

where xt is the test feature vector observed at time t and

(p(xt|Ωk))k=i,j is the class-conditional probability of xt, which

is modeled as a GMM.

5. EXPERIMENTAL STUDY

5.1. The sound database

We collected sound excerpts corresponding to the classes given in

figure 2 from both commercial Compact Disc (CD) recordings and

RWC jazz music database [16]. It was found that, in practice, some

combinations appearing on figure 1 are very rare. Consequently,

they were not tested in the experimental study, since no sound ma-

terial representing these classes could be assembled. Table 1 gives

an overview of the data used in our experiments. 2/3 of the data

was used for training and the remaining 1/3 used for testing.

BsDrPnTr BsDrPnSaBsDrSaSaTr BsDrTr

Dr M Pn BsDrM BsPn BsDrPn BsDrPnMBsDr

Fig. 2. Experimented taxonomy for the recognition of musical

instruments in jazz piano ensembles from solos to quartets.

5.2. The selected features

A total of 164 features are explored for our classification task.

Class-pairwise feature selection is performed at each level of the

Training (s) Test (s)

Pn 777 388

Sa 555 278

Tr 1471 738

Dr 308 154

BsPn 356 178

BsDr 184 92

BsDrSa 173 86

BsDrTr 114 57

BsDrPn 1142 571

BsDrPnSa 98 49

BsDrPnTr 518 259

Table 1. Sound database for the experimental study. ’Training’

and ’Test’ are respectively the total durations of training and test

material in seconds.

taxonomy. At the top-level (the parents level consisting of 8 classes),

the average number of features selected using C8
2-IRMFSP (with

ε = 10−6) is 30.33. The size of the most relevant feature sets

ranges from 6 for the pairs {M, BsPn} to 52 for the {Dr, BsDr}
confrontation. The most successful features are MFCC, OBSI,

spectral statistics, Zero Crossing Rates and frequency cut-off. At

the low-level, 37 features are selected for discriminating between

the sax and the trumpet, 25 for the pair BsDrSa/BsDrTr and 44 for

BsDrPnSa vs BsDrPnTr.

5.3. Classification results

Table 2 presents the recognition accuracies at the 2 levels of the

taxonomy, obtained with one vs one GMM classifiers (with 64
component densities) using the features found previously. The

rates presented between parenthesis are the ones corresponding to

the accuracies found within the same level of the hierarchy, inde-

pendently from the recognition success of the parent nodes. Scor-

ing is performed as follows : for each test signal, a decision re-

garding the instrument classification is taken every T seconds (L
observations). The recognition success rate is then, for each class,

the percentage of successful decisions over the total number of T -

second test segments. Two decision-lengths are tested, T = 2s
and T = 4s.

Very satisfactory results are found for all classes except the

drums and BsDrPn. With T = 2s , the drums are confused with

BsDrPn 68.66% of time and with the class M in 13.43% of the

cases. It is believed that the identification of this class could be

highly improved by means of appropriate attributes such as wavelet

descriptions. The class BsDrPn is classified as BsDrPnM 46.42%

of the time. This is probably due to the fact that an important num-

ber of audio segments from the class BsDrPn may slip into the

training set relative to BsDrPnM. Indeed, when assembling the

experimental data, one is obliged to segment by hand BsDrPnM
music in order to drop all material not involving the four instru-

ments simultaneously, which is not so obvious given the temporal

resolution of one’s ear that is greater than the frame-size of 32ms.

With longer decision-lengths, better performance is achieved

in average. Some classes, such as BsDr and BsPn are always iden-

tified correctly. However, this parameter can be a sensitive one in

segmentation applications. In fact, since short-time decisions can

be taken (≈ 2s), the proposed system can be easily employed in

a task of segmentation of music duos, trios and quartets. By com-

bining the decisions given over 2s-windows, it is easy to define
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% correct T ≈ 2s T ≈ 4s
Dr 10.45 12.12

BsDr 97.37 100.00

M 99.39 99.70

Pn 95.31 95.83

BsDrM 95.88 95.83

BsPn 97.65 100.00

BsDrPn 53.58 54.55

BsDrPnM 93.70 93.65

Sa 96.80 (97.39) 98.31 (98.61)

Tr 93.12 (93.69) 93.60 (93.88)

BsDrSa 95.88 (100.00) 95.83 (100.00)

BsDrTr 85.90 (89.66) 88.99 (92.86)

BsDrPnSa 86.70 (92.52) 90.12 (96.23)

BsDrPnTr 88.70 (94.74) 93.65 (100.00)

Table 2. Recognition accuracies with 2-s and 4-s decision lengths.

% correct T ≈ 2s

1 source 97.58 (54.02)

2 sources 97.51

3 sources 74.73

4 sources 93.70

Table 3. Correct detections of the number of musical sources. For

1-source detection, the value between parenthesis is found when

considering the drums as a possible source.

the segments wherein each instrument or group of instruments is

involved.

Another application of this work is the detection of the num-

ber of instruments or sources involved in the audio signal, which

can be very helpful for source separation tasks. Table 3 gives the

percentage of correct detections of the number of sources using 2-s

decision lengths. The average success rate is 90.88 %.

6. CONCLUSION

A new approach to machine recognition of musical instruments

has been proposed addressing the polyphonic musical context. The

suggested taxonomic scheme, which is inspired by intuitive cues

on the structure of musical ensembles, is capable of identifying

up to 4 instruments playing concurrently. Using class-pairwise se-

lected subsets of features and GMM classifiers exploited in a one

vs one fashion at each level of the hierarchy results in high recog-

nition accuracies. The system does not need to perform any fun-

damental frequency analysis and can be used to detect the number

of sources to help source separation tasks. Furthermore, classifi-

cation can be done over short-time windows (2s), which allows us

to perform segmentation.

Future work will be dedicated to the assessment of the proposed

methodology on more varied musical genre and instrumentation.
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