
IMPLEMENTATION OF FINITE DIFFERENCE SCHEMES FOR THE WAVE EQUATION

ON FPGA

E. Motuk, R. Woods, and S. Bilbao

Sonic Arts Research Centre, Queen's University of Belfast, Belfast, Northern Ireland

{e.motuk, r.woods, s.bilbao@qub.ac.uk}

ABSTRACT

The computational requirements of finite difference

schemes for the solution of the wave equation for physical

modelling can be huge. Field programmable gate arrays

(FPGAs) provide an ideal platform for performing highly

parallel DSP computations but the challenge is to be able

to quickly and efficiently implement complex systems on

FPGA platforms. The paper presents a system level design

approach based on dataflow model of computation using a

particular finite difference scheme for the solution of 2+1-

D wave equation. The results suggest that 84000 nodes

could be accommodated on a single Virtex II FPGA.

1. INTRODUCTION

Physical modelling based sound synthesis and acoustical

simulation deals with the solution of partial differential

equations representing physical phenomena of sound

production and propagation. The wave equation is an N+1

dimensional hyperbolic partial differential equation

having N space and 1 time dimensions. It describes

displacement on a membrane in 2+1-D and sound

propagation in spaces in 3+1-D form. Finite difference

(FD) schemes transform the partial differential equation

into a difference equation by discretizing time and space

on an N+1 dimensional grid. For accurate and stable

approximations, these schemes employ high sampling

rates resulting in high computation. Parallel processors

have been used to speed up the computation [1], but they

are expensive. Field programmable gate arrays (FPGAs)

provide enormous potential as it is possible to derive the

architecture to best match the computational requirements.

However, realisation is largely a hardware design process

and can be very tedious and time-consuming and it is clear

that a good high-level design approach is needed.

In this paper, an approach based on the data flow

graph (DFG) model of computation is proposed. The

particular focus is to realise the explicit FD scheme for the

2+1-D wave equation. Some custom FPGA hardware for

FD including FDTD algorithms for solving Maxwell’s

equations in 2-D or 3-D cases has been reported [2, 3].

The paper is organised as follows. Background on FD

schemes is given in section II and the system level design

methodology is presented in Section III. Section IV

presents the DFG specification and partitioning of the FD

algorithm using GEDAE. Section VI outlines the FPGA

implementation. Section VII gives an analysis of the FD

mesh implementation on the Xilinx Virtex II FPGA.

2. FD SCHEMES FOR 2+1-D WAVE EQUATION

Numerous two-step explicit FD schemes exist, which use

discretization of time and space on a structured

rectangular grid for the solution of 2+1-D wave equation

given below, with certain initial and boundary conditions.

2

2

2

2
2

2

2

y

u

x

u
v

t

u (1)

When the variable u(x,y,t) is approximated by a grid

function n

jiu ,
, where the grid points are defined as x=i x,

y=j y, and t=n t with x = y, and two-step central

differences are substituted for the second derivatives, we

obtain the explicit FD form, which is also called centred in

time and space (CTCS) scheme [4].

1

,

2

,1,1,,1,1

21

,)21(2 n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji uuuuuuu (2)

where xtv . From the von Neumann analysis, the

Courant-Friedrichs-Lewy condition is derived, which

places a restriction, 21 for the stability of the FD

scheme [5]. For the particular case where 21 , the

equation 2 reduces to the simple scheme,

1

,1,1,,1,1

1

, 2
1 n

ji

n

ji

n

ji

n

ji

n

ji

n

ji uuuuuu (3)

In this case, the FD scheme becomes identical to the 2-

D rectangular waveguide mesh representation of the wave
motion, which is composed of a network of bi-directional

delay elements and 4-port scattering junctions [6]. Fig. 1

shows the graphical representation of the FD scheme in

eqn. 3.

From the von Neumann analysis, it can be shown that

for the FD scheme corresponding to a rectangular mesh,

the speed of propagation of the numerical solution

III - 2370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

depends on the frequency and the direction - called the

dispersion error [4]. This can be compensated for by

increasing the density of the grid points. From the

waveguide mesh point of view, interpolated and frequency
warped rectangular meshes provide reduction of

dispersion error at the expense of increased number of

operations per grid point [7]. Triangular waveguide
meshes, which are based on a topology of junctions

connected to their 6 neighbours, provide better directional

dispersion characteristics than rectangular meshes, but this

is not the subject of this paper.

n

j

i1 ,

x

t

y

t

1

,

n

ji
u

y

x

u

uuu

u

n

n

nn

i

i

i

ij

,

,

, ,1j j

j 1

1

Fig. 1. FD scheme graphical representation

3. IMPLEMENTATION OF FD SCHEMES

The computational requirements of a FD scheme depend

on o, the number of operations per grid point, the size of

the grid and the update rate, f. For a two dimensional

medium of size (LXM), the number of operations per

second, is 2xLMof , where x is the grid spacing.

From the sampling theorem, the FD update rate

determines the frequency bandwidth of the wave to be

propagated, and as a result, the stability condition. When

21 , the update rate is xvtf 21 , and

therefore the grid has to be denser for higher bandwidths.

For the FD scheme in equation (3), 5 operations namely 1

multiplication, 3 additions and 1 subtraction are needed to

update the grid point. In order to solve the wave equation

by the FD scheme (eqn. 3) for a two-dimensional

representation of a room with the audio sampling rate of

44.1 kHz and a grid spacing, x, of 0.0109m

(441002343 / where v=343m/s), the total number of

operations per second for a room (4mx5m) for a real-time

application is 36.5x109. In addition, the different boundary

conditions and oversampling the mesh to reduce

dispersion error result in increased computation.

The explicit FD schemes naturally lend themselves to
parallel implementations as the same operations are being

applied to different data in the problem domain, and there

is no limiting temporal dependencies, and FPGAs would

be appear to be an ideal platform. A system level design

flow based on dataflow computational model would

appear to offer an ideal design flow [9] as outlined in Fig.

2.

4. HIGH LEVEL REPRESENTATION BY DATA

FLOW NETWORKS

For data parallel algorithms, dataflow graph (DFg)

representations allow high-level specification that is

independent of the underlying hardware. It utilizes data
dependencies to fully exploit parallelism in an algorithm.

The communication mechanism in data flow networks is

asynchronous message passing [10], which is suited for

algorithms having locality of communication like FDs.

The model also allows the use of a visual syntax based on

block diagrams for specifying the algorithms, which

simplifies the design process.

PROCESSOR FPGA

SYSTEM REQUIREMENTS

High Level Specification

Algorithm Validation

Partitioning/Mapping

FPGAPROCESSOR

Performance Simulation

H/W

Component

Library

Software

Component

Library

Actual Implementation

PROCESSOR FPGA

SYSTEM REQUIREMENTS

High Level Specification

Algorithm Validation

Partitioning/Mapping

FPGAPROCESSOR

Performance Simulation

H/W

Component

Library

Software

Component

Library

Actual Implementation

Fig. 2. System level design flow

Actor Actor

Before firing After firing

Token

Fig. 3. Simple data flow example

In DFG, the algorithm is specified by a directed

dataflow graph where the nodes (actors) represent

computations and the arcs represent totally ordered
sequences (streams) of events (tokens) [11]. The nodes are

hierarchical structures that may represent other directed

graphs and can also be implemented as either high level

language or behavioural HDL code. The tokens are data

structures that can range from scalars to matrices.

Whenever a specific set of input arc of a node has data

then the node is able to fire. Firing of a node is the

computation of the function associated with that node and

involves consuming tokens from its inputs and producing

tokens on its outputs (Fig. 3).

GEDAE is a block based graphical development

platform based on DFG for rapidly implementing DSP

algorithms onto multiple processors [12]. In GEDAE, each

node can be associated with a point in the FD grid (see

Fig. 1) allowing the update equation associated with each
grid to be computed. The arcs connect the nodes

III - 238

➡ ➡

representing the neighbouring grids to each other in order

to exchange values needed for the update as data streams.

Fig. 4 shows the GEDAE DFG that represents a 3X3

square mesh for the implementation of the FD scheme in
equation 3. Fig. 4 also shows the inner DFG of a grid

point. According to equation (3), a grid point requires the

previous iteration values of 4 neighbouring points and its
own two previous iteration value to calculate its current

iteration value. In DFG representation, this is

implemented by the use of two delay boxes where the

input to the first is the calculated value and the input to the

second is the previous iteration value. This value is also

put on the arcs that connect the node to its neighbours.

Excitation of the mesh is done by changing the stored

previous iteration value of the node that is to be excited.
When represented as a DFG, this requires the use of a

control stream and a merge box that selects between the

excitation value and the previous iteration value of the
node to be transferred to the neighbouring nodes and the

second delay box, thus realising conditional data flow.

Fig. 4. GEDAE DFG of a 3X3 mesh

Domain decomposition method is the parallelism

strategy which involves partitioning the domain into sub-

domains [13] as shown in Fig. 5 for a 2-D rectangular

grid. Sub-domains are mapped onto the processing

elements (PEs) in mesh connectivity. According to the FD

scheme formulation, updating the value of a grid point

requires the values of the neighbouring grid points,

therefore values on the sub-domain boundaries have to be

transferred between the neighbouring sub-domains in each
iteration period. Therefore, this communication locality is

exploited by the block partitioning method.

5. FPGA IMPLEMENTATION

Each PE realizes the operations related to a grid point in

the mesh according to the data flow shown in Fig. 4. The

communication between the PEs is handled automatically

by GEDAE provided that there are hardware structures

supporting the token based point-to-point communication

structure. Therefore, each PE is equipped with send and

receive signals for the transfer of data values as tokens.

The communication between the PEs is point-to-point and

buffers are implemented as registers to hold the token

values. Fig. 6 shows the PE in block form and the
hardware structure inside. The PE has 4 inputs and an

output to be connected to its neighbours. The control input

accepts the control tokens from the host to know whether
the node is excited by the value at the excite input.

Fig. 5. Example of domain decomposition

In the inner structure of the PE, the interface unit is

responsible for communication between PEs and has

buffers. The memory is implemented as registers to store

the values of the previous and two previous iterations. The

update operation is pipelined. The control unit generates

the signals for the timing and flow of data between the

units. The PE is coded in VHDL and synthesized for

Xilinx VirtexII FPGAs using the Synplify synthesis tool.

INT.

BUFFERS

IN1

IN2

IN3

IN4

+ X -
constant

COMM.

SIG.

CONTROL

EXCITE

OUT1

OUT2

CONTROL

UNITINTERFACE

UNIT

REG

A

COMM.

SIG.

MEMORY

OPERATION

UNIT

REG

B

Fig. 6. Details of the PE

Depending on the partitioning, mapping of the nodes

to the PEs can either be on a one-to-one or many-to-one

basis. The first of the two factors that determine the

mapping is the level of parallelism required for real-time

execution of the algorithm taking into consideration the

communication overhead. The second factor is the FPGA

size which determines the number of PEs. When more

than one node in the DFG is mapped onto a PE, the

communication buffers and registers that store the

previous iteration values can be scaled, and they are

implemented in the FPGA in either block or distributed

form. Distributed memory uses up FPGA slices and is

suitable for small memory structures, whereas block

memory can be used for larger memory blocks. Therefore,

when a large number of nodes are to be mapped on to a

single PE, the storage memory should be implemented as

III - 239

➡ ➡

block RAM. The communication buffers in the interface

unit can be implemented as distributed memory.

6. PERFORMANCE ANALYSIS

Table-1 shows the synthesis results for a single PE and

gives clock cycles for computation and communication.
This means that 400PEs can fit onto the largest Xilinx

Virtex (XC2V8000 device) and would take 11 clock

cycles to complete one iteration of the FD calculation.

This gives a maximum iteration frequency of the FD

scheme of 16.6 MHz which indicates that to produce 1s of

sound sampled at 44.1 kHz, the computation will take

0.0026 seconds which is much faster than the real-time.

Table 1. Xilinx Virtex-II FPGA results for a single PE
No. of clock cycles Slices Max. Freq.

(MHz) (Computation) (Communication)

111 182.7 5 6

As the PE can execute much faster than the sampling

rate of the algorithm, mapping many nodes to a PE is a

feasible option to implement larger meshes. This changes
the size of PE’s communication buffer, internal memory,

and controller unit. Table II gives details when a block

partition of size 15x15 is mapped onto one PE.

Table 2. 15x15 node mapping to a single PE
No. of clock cycles Storage

memory

locations

Interface

memory

locations (Computation) (Communication)

450 120 2025 1140

The storage memory locations are double the total

number of nodes and interface memory locations is double

the nodes on the partition boundary. As the operation unit

is pipelined, ideally it should take 1 clock cycle per node

to calculate the next iteration value. However, 4 memory

reads to supply the pipeline and 2 memory writes at the
end to update the stored values increase the number of

clock cycles per node to 9. The number of clock cycles for

communication is determined by the number of boundary
nodes, and to increase the throughput the communication

and the computation can be interleaved. Without

interleaving, it takes 3165 clock cycles to complete one

iteration period, and when the PE is run at 180 MHz, the

iteration rate is 56.87 kHz. In this case it will take 0.775

seconds to produce 1s of sound sampled at 44.1 kHz.

The limiting factor that determines the number of PEs

will be the total amount of memory on the device, rather

than the number of logic slices. The total amount of

memory on a XC2V8000 device is 3 Mbits arranged as

168 18Kbit blocks. When each 18Kbit memory block is

dedicated to a PE, 168 PEs can be accommodated which

means 500 nodes to be mapped onto a single 16-bit PE.

This gives a mesh size of 168x500 or 84000 nodes.

However, in this case, the current throughput rate will not

be able to satisfy the real-time constraint. Better PE design

should increase the running frequency, and interleave

communication and computation, thus increasing the

throughput.

7. CONCLUSIONS

In this paper, a system level DFG-based design

methodology for implementing FD schemes involving the

use of data flow networks has been presented. The work

suggests that a mesh with 84,000 nodes can be

implemented on a single FPGA. The advantage of the

approach means that this system will be easily extended to

a heterogeneous platform comprising processor and

FPGAs which has not been possible before.

8. REFERENCES

[1] A. Villareal, J. A. Scales, “Distributed Three-

dimensional Finite-difference Modeling of Wave

Propagation in Acoustic Media”, Computers in Physics,

Vol. 11, No. 4, pp. 388-389, 1997

[2] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport,

“An FPGA Implementation of the Two-dimensional

Finite-difference Time-Domain (FDTD) Algorithm”, in

IEEE Proc. FPGA, Monterey, USA, pp. 213-222, 2004.

[3] J. P. Durbano, et al. “Hardware Implementation of a

Three-dimensional Finite-difference Time-domain

Algorithm”, IEEE Ant. and Wireless Propagation Letters,

Vol. 2, No.1, pp. 54-57, 2003.

[4] S. Bilbao, J. O. Smith, III, “Finite Difference Schemes

and Digital Waveguide Networks for the Wave Equation:

Stability, Passivity, and Numerical Dispersion”, IEEE

Trans. on SAP, Vol. 11, No. 3, pp. 255-266, 2003

[5] J. Strikwerda, Finite Difference Schemes and Partial

Differential Equations, Pacific Grove, CA: Wadsworth

and Brooks/Cole, 1989

[6] S. A. Van Duyne, J. O. Smith, III, “Physical Modeling

with the 2-D Digital Waveguide Mesh”, in Proc. Int.

Computer Music Conf., pp.40-47, Tokyo, Japan, 1993

[7] L. Savioja, V. Valimaki, “Reducing the Dispersion
Error in the Digital Waveguide Mesh Using Interpolation

and Frequency-Warping Techniques”, IEEE Trans. on

SAP., Vol. 8, No. 2, pp. 184-194, 2000.
[9] K. Keutzer, et al., “System Level Design:

Orthogonalization of Concerns and Platform-based

Design”, IEEE Trans. on CAD of Circuits and Systems,

Vol. 19, No. 12, pp. 1523-1543, 2000.

[10] W. Johnston, J. P. Hanna, and R. Millar, “Advances

in Dataflow Programming Languages”, ACM Computing

Surveys, Vol. 36, No. 1, pp. 1-34, 2004.

[11] E. A. Lee, T. Parks, “Dataflow Process Networks”,
Proc. of IEEE, Vol. 83, No. 5, pp. 773-801, 1995.

[12] Gedae Technical Brochure, www.gedae.com

[13] I. Foster, Designing and Building Parallel Programs,
Addison-Wesley, 1995.

III - 240

➡ ➠

