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ABSTRACT

This article is concerned with the estimation of fundamental fre-
quencies, or F0s, in polyphonic music. We propose a new method
for jointly evaluating multiple F0 hypotheses based on three phys-
ical principles: harmonicity, spectral smoothness and synchronous
amplitude evolution within a single source. Based on the genera-
tive quasiharmonic model, a set of hypothetical partial sequences
is derived and an optimal assignment of the observed peaks to the
hypothetical sources and noise is performed. Hypothetical partial
sequences are then evaluated by a score function which formulates
the guiding principles in a mathematical manner. The algorithm
has been tested on a large collection of artificially mixed poly-
phonic samples and the results show the competitive performance
of the proposed method.

1. INTRODUCTION

Automatic transcription of polyphonic music has attracted involve-
ments in several research topics including multiple fundamental
frequency estimation, onset detection, rhythm/meter estimation,
etc.. Despite increasing research activities with respect to poly-
phonic music signals, the estimation of multiple F0s remains a
challenging problem. Some of the generally admitted difficul-
ties are: estimating the number of F0s, retrieving reliable time-
frequency properties and treating mixtures of transient parts and
stationary parts. These difficulties mainly come from the multi-
timbre mixture of various musical instruments, diverse spectral
characteristics which are related to different playing techniques,
chords consisting of harmonically related F0s and acoustical in-
terference such as reverberation.

In the present investigation we focus on estimating F0s in mu-
sical signals when the number of F0s is known in advance. The
importance of including higher level features in addition to pe-
riodicity/harmonicity in multiple F0 estimation has been demon-
strated by most of the existing approaches. Martin has proposed
a blackboard system gathering all available knowledge to rate F0
hypotheses [1]. Goto [2] introduces tone models as a constraint
on relative partial amplitudes. In Klapuri’s multiple F0 estima-
tion algorithm, the spectral smoothness principle is a key to deal
with overlapped partials [3]. For the probabilistic signal model-
ing approach presented in [4], the prior distributions of the model
parameters are in fact physical constraints on spectral models in
search. The core of our multiple F0 estimation is a score function
which jointly evaluates multiple F0 hypotheses. Based on a gener-
ative quasiharmonic spectral model, hypothetical partial sequences
are constructed and evaluated based on three physical principles:

harmonicity, spectral smoothness and synchronous amplitude evo-
lution within a single source.

This paper is organized as follows. In section 2, the generative
quasiharmonic model is described and the principles for F0 esti-
mation are established. In section 3, we introduce a frame-based
F0 estimation method using a physical principle driven score func-
tion. In section 4, experimental results are shown, which proves
the competitive performance of the proposed method. Finally, we
discuss this method and draw conclusions.

2. GENERATIVE QUASIHARMONIC MODEL

The proposed algorithm is based on a polyphonic quasiharmonic
signal model of the following form

y[n] =
{ M∑

m=1

Hm∑
hm=1

am,hm [n] cos
(
(1 + δm,hm)hmωmn

+ φm[n]
)}

+ v[n], (1)

where n is the discrete time index, M is the number of sources,
Hm is the number of partials for the m-th source, ωm represents
the F0 of source m and φm[n] denotes the phase. The score func-
tion used here makes use of am,h[n] and δm,h which are the time
varying amplitude and the constant frequency detuning of the h-th
partial, and also v[n] which is the residual noise component. Gen-
erally it is supposed that the noise is sufficiently small such that a
considerable part of the individual sinusoidal components can be
identified.

Similar to [5] we understand the observed spectrum as gener-
ated by sinusoidal components and noise, and all necessary infor-
mation for F0 estimation is to be extracted from the properties of
spectral peaks. Each peak is considered either sinusoidal or noise.
A sinusoidal peak is assigned to one or more of the M sources
in eq.(1), all unassigned peaks contribute to the noise component
v[n]. Based on this model and given the observed spectrum and
M , the most plausible F0 hypotheses are going to be inferred. To
construct and evaluate hypothetical sources, we rely on the three
physical principles:

Principle 1: Spectral match with low inharmonicity. For each
F0 hypothesis, a hypothetical partial sequence, HPS, is constructed
by selecting harmonically matched peaks from the observed spec-
trum in such a way that δm,h are minimized. The set {HPSF0m}M

m=1

corresponding to M hypothetical sources should combinatorially
explain as many peaks as possible of the observed spectrum such
that the remaining noise energy is minimized.
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Principle 2: Spectral smoothness. The spectral envelopes of
musical instrument sounds tend to form smooth contours [3]. While
constructing the HPS of a source, the partials should be selected
in a way such that {am,h}Hm

h=1 results in a spectral envelope as
smooth as possible.

Principle 3: Synchronous amplitude evolution within a single
source. Partials belonging to the same source should have similar
time evolution of the amplitudes {am,h}Hm

h=1 contained in a HPS.
If the partials assigned to a hypothetical source match mostly to
noisy peaks, they evolve in a random manner and thus will not
have a synchronous amplitude evolution.

3. MULTIPLE F0 ESTIMATION

Based on the three principles described above, we design a mul-
tiple F0 estimation system. The main task is to formulate these
principles into four criteria serving as the core components in a
score function for evaluating the plausibility of one set of F0 hy-
potheses.

3.1. Front end

While analyzing polyphonic signals with limited spectral reso-
lution, one often observes that the dense distribution of partials
causes some peaks to be hidden by relatively larger coincident
ones. Thus, we evaluate the shapes of the observed peaks and their
spectral properties proposed in [6] to choose the possibly over-
lapped peaks which are then processed to extract hidden peaks.

To generate an F0 candidate list, we use a harmonic matching
technique. For each F0 hypothesis, a vector dF0 is constructed
to evaluate the degree of deviation from a harmonic model to the
observed peaks, and a tolerance interval around each harmonic is
used to measure the goodness of harmonic matching. For the i-th
observed peak matching the h-th harmonic, the degree of deviation
is formulated as

dF0(i) =
|fpeak(i) − fmodel(h)|

α · fmodel(h)
(2)

where fpeak(i) is the frequency of the i-th observed peak, fmodel(h)
is the frequency of the h-th harmonic of the model, and α deter-
mines the tolerance interval. If an observed peak situates outside
the corresponding tolerance interval, it is regarded as unmatched
and dF0(i) is set to 1. Then we define the harmonic matching
function as:

HARF0 =

I∑
i=1

Corr(i) · Spec(i) · dF0(i)∑
i[Corr(i) · Spec(i)]

(3)

where I is the number of observed peaks, Corr is the complex
correlation between each observed peak and an ideal sinusoidal
peak defined by the analysis window, Spec is the peak energy vec-
tor. Since inharmonicity exists in most of the string instruments,
it is necessary to dynamically adapt the frequencies of model har-
monics according to the best matched peak. This is realized by
the partial selection technique. We start with the fundamental by
simply assigning it to the closest peak observed. For the follow-
ing partials we consider two candidate peaks: the one closest to
fmodel(h) and the one of which the mainlobe contains fmodel(h).
Compared to the formerly selected partials, the peak candidate
forming a smoother envelope is selected as the best matched peak.
Then fmodel(h + 1) is calculated by means of adding F0 to the

frequency of the best matched peak. If there is no peak assigned to
the current partial, fmodel(h)+F0 is used for the next match. All
the peaks having been assigned to an F0 hypothesis are forming
the HPS. The F0 hypotheses corresponding to local maxima of the
harmonic matching function are added to the candidate list. Then,
all possible combinations of the candidates will be evaluated by a
score function.

Although the HPS of each F0 candidate has been constructed
during harmonic matching, the overlapped partials need to be taken
care of. The treatment of overlapped partials is based on the idea
that an overlapped partial still carries important information for at
least the HPS that locally has the strongest energy. Therefore, the
algorithm aims to assign the overlapped partial to this HPS. Con-
structing a HPS in fact utilizes Principle 2 and the knowledge of
spectral locations where partial overlaps may occur according to
the current set of F0 hypotheses under investigation. The guiding
principle is to make use of the credibility of available information.
The strategy for treating the overlapped partials is listed below:

(i) Partials having potential collision are determined from each
hypothetical combination of HPSs.

(ii) The local energy strength of the envelope is obtained by
means of interpolating the neighboring partial amplitudes
that are not collided. By comparing the interpolated am-
plitudes estimated from all the HPSs of a hypothetical set
of F0 candidates, the overlapped partial is exclusively as-
signed to the one having the most dominant interpolated
amplitude among all and then labeled as “effective” which
means that it can be used for interpolation for its neighbor-
ing partials. The rest of the HPSs the overlapped partial
is considered “not effective” and is labeled as existing but
without a specified partial amplitude.

(iii) If one neighboring partial happens to be overlapped and not
effective, the non-overlapped partial at the other side is used
instead. If the two neighboring partials are not effective,
the corresponding HPS is not considered as having reliable
information for interpolation and is thus excluded.

(iv) If the amplitude of the overlapped partial is smaller than
any interpolated amplitude, it is difficult to infer which F0
hypothesis contributes the most and thus partial assignment
is not carried out but this overlapped peak in all HPSs are
labeled as “effective” for further use of interpolation.

3.2. The score function

Having constructed the most reasonable HPSs for each set of F0
hypotheses, we design a score function to rank these hypotheti-
cal sets. The score function formulates the three principles into
four criteria: harmonicity HAR, mean bandwidth MBW and effec-
tive length EFL of HPSs, and the standard deviation of mean time
SYNC.

HAR is an indication of harmonicity and totally “explained”
energy. It is formulated as eq.(3) with dF0(i) replaced by

dM (i) = min
({dF0m(i)}M

m=1

)
(4)

That is, each observed peak is matched with the closest partial
among those of {HPSF0m}M

m=1 and thus each combination under
investigation can perform its optimal match.

To evaluate the smoothness of a HPS, we use the mean band-
width as a criterion. Each HPS is assembled with its flipped se-
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quence to construct SF0m for further evaluation. Applying K-
point FFT to SF0m , we obtain the linear spectrum XF0m and cal-
culate the mean bandwidth MBWF0m as

MBWF0m =

√√√√2 ·
∑K/2

k=1 k[XF0m(k)]2∑K/2
k=1 [XF0m(k)]2

(5)

This indicates the degree of energy concentration in the low fre-
quency region and thus SF0m with less variation results in a smaller
value of MBWF0m .

For the signal produced by a musical instrument, the spectral
centroid tends to lie around lower partials because higher partials
often decay gradually. From this general principle related to Prin-
ciple 2, we can similarly evaluate the energy spread of a HPS in
terms of the effective length of SF0m . Instead of removing the
non-reliable components from HPSF0m , we use linear interpola-
tion to reconstruct an estimated partial sequence EPSF0m . Then
the effective length of HPSF0m can be calculated as

EFLF0m =

√
2 ·

∑Nm
n=1 n[EPSF0m(n)]2

L · ∑Nm
n=1[EPSF0m(n)]2

(6)

where Nm is the length of EPSF0m . L is a normalization factor
determined by �F90/F0min�, where F90 stands for the frequency
limit containing 90% of spectral energy in the analyzing frequency
range and F0min is the minimal hypothetical F0 in search. Since
the spectral envelopes of musical signals are not always smooth,
this criterion functions as the further test of physical consistency of
Principle 2 and acts as a penalty function for subharmonics which
explain more than one source in the observed spectrum.

To evaluate the synchronicity of the temporal evolution of the
hypothetical sinusoidal components in a HPS, we rely on the esti-
mation of the mean time for individual spectral peaks. Mean time
is an indication of the center of gravity of signal energy [7] and the
mean time of a spectral peak can be used to characterize the am-
plitude evolution of the related signal [8]. For a coherent HPS we
expect synchronous evolution resulting in a small variance of mean
time concerning the collection of peaks. The mean time of a hypo-
thetical source, denoted as TF0m , is calculated as the power spec-
trum weighted sum of the mean time of the hypothetical partials.
The standard deviation of mean time of the partials in HPSF0m is
then formulated as

SYNCF0m =
1

win/2

√√√√ I∑
i=1

{[t̄i − TF0m ]2 · wF0m(i)} (7)

where win is the window size, t̄i denotes the mean time of the i-th
observed peak. The weighting vector {wF0m(i)}I

i=1, normalized
to be summed to one, is constructed from HPSF0m by setting zeros
for the following components: (i) non-reliable partials due to over-
laps and (ii) close partials of which spectral phases are probably
disturbed. Lastly, {wF0m(i)}I

i=1 is compressed by an exponential
factor to reduce the dynamic range such that the significance of
spurious peaks is raised. This makes use of the spurious peaks to
penalize more a HPS containing more spurious peaks.

Here we define “effective energy”, denoted as EengyF0m
, for

each F0 hypothesis as the sum of linear amplitudes of HPSF0m .
Then {MBWF0m}M

m=1, {EFLF0m}M
m=1 and {SYNCF0m}M

m=1 of
a set of F0 hypotheses are weighted by the effective energy and

then summed to define MBW, EFL and SYNC, respectively. The
final score function is formulated as

D = p1 · HAR + p2 · MBW + p3 · EFL + p4 · SYNC (8)

where {pj}4
j=1 are the weighting parameters for the four criteria.

These criteria are designed in a way that a smaller weighted sum
stands for higher score. Notice that HAR favors lower hypothetical
F0s while MBW, EFL and SYNC favor higher ones. Therefore, the
criteria perform in a complementary way and the weighting pa-
rameters should be optimized to balance the relative contribution
of each criterion such that the score function generally supports
the correct combinations of F0s the best. Similar to the F0 refin-
ing technique in [5], we apply a linear regression of F0s estimated
from the effective hypothetical partials.

4. EXPERIMENTAL RESULTS

To evaluate the proposed F0 estimation method, we perform a
frame-based test using mixtures of musical samples. Non-transient
parts of monophonic musical samples are pre-selected and then
mixed with equal mean-square energy to generate polyphonic sam-
ples. Estimation of a polyphonic sample is performed within a
single frame. The number of F0s is given in advance for the F0
estimation system to find the most probable set of F0 hypotheses.

The parameters to be optimized are the weighting parameters
{pj}4

j=1 in the score function and α for determining the tolerance
interval in eq(2). 300 polyphonic samples containing 100 sam-
ples for each voice mixture are generated by randomly mixing
musical instrument samples from the University of Iowa1. Then
the parameters are optimized utilizing the evolutionary algorithm
[9] and the set of parameters of the best performance({pj}4

j=1 =
{0.3774, 0.2075, 0.2075, 0.2075}, α = 0.035) is used for the fi-
nal evaluation on a large database. Specifications for this test are
described below:

• Three databases: two-voice, three-voice and four-voice mix-
tures, labeled as TWO, THREE and FOUR respectively, are
generated using musical samples from McGill University2,
Iowa University and IRCAM (Studio On Line). In com-
bining M -voice polyphonic samples, M out of twelve tone
names are preliminarily assigned and the monophonic sam-
ples ranging from 65Hz to 2000Hz are randomly mixed.
Totally around 4800 samples are generated in a way that
each combination of tone names are of equal proportion.
Musical instrument samples not fitting the quasiharmonic
model are excluded, such as the mallet percussion instru-
ments and the bells [10]. To facilitate comparison, the database
is published on the author’s web page [11].

• The search range for F0 is set from 50Hz to 2000Hz and the
observed spectrum is analyzed up to 5000Hz. A Blackman
window is used for analysis.

• F0 reference values are created from single F0 estimation
of monophonic samples before mixing. A correct estimate
should not deviate from the corresponding reference value
by more than 3%. The error rates are computed as the num-
ber of wrong estimates divided by the total number of target
F0s.

1http://theremin.music.uiowa.edu/MIS.html
2http://www.music.mcgill.ca/resources/mums/html/
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The testing results using two analysis window sizes, 186ms
and 93ms, are shown in Table 1. Since musical samples mixed
randomly surely contain harmonically related notes, we present
the error rates for two groups of samples: one group of mixtures
containing harmonically related notes, labeled as “harmonical”,
and another group “non-harmonical”. The overall error rates are
shown in the “total” columns. The percentages of samples in the
group “harmonical” are 21.89%, 51.62% and 55.54% for the three
databases TWO, THREE and FOUR, respectively.

polyphony window non-harmonical harmonical total

TWO 186ms 0.38% 2.90% 0.93%
93ms 1.19% 4.05% 1.82%

THREE 186ms 1.03% 5.11% 3.13%
93ms 3.31% 6.78% 5.10%

FOUR 186ms 1.78% 6.61% 4.46%
93ms 5.77% 11.41% 8.90%

Table 1. F0 estimation results

The errors in the group “non-harmonical” are quite small which
proves the competitive performance of the proposed method. The
result also demonstrates the possibility of estimating harmonically
related F0s for the case when the mixing notes are of similar en-
ergy. To study the significance of each criterion except HAR in the
score function, we perform three further tests by deactivating one
of MBW, EFL and SYNC in each test. The comparison with the
original result is shown in Figure 1. It is observed that the deacti-
vation of any of the three criteria degrades the overall performance.
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Fig. 1. Performance comparison while each criterion is deactivated

A great proportion of errors are caused by the ambiguity con-
cerning target F0s and their subharmonics or superharmonics. Poly-
phonic samples mixed with musical instrument samples of rich
resonances do not match the generative quasiharmonic model and
thus are difficult to evaluate. If there exist strong resonances in
addition to the partials (as observed in the string instruments), it is
difficult to distinguish which part of energy relates to resonances
while evaluating HAR. If strong resonances boost certain partials

too much (as observed in oboe) and thus introduce more variations
in the spectral envelope, the combination of MBW and EFL might
still risk to reduce the score too much. If the partials are far less
dominant than the fundamental (as generated by plucking string in-
struments), it is more likely that the properties of the weak partials
are more noise-like and SYNC does not present a fair indication of
the synchronous evaluation of partial amplitudes.

5. CONCLUSION

We have presented a new method to estimate multiple F0s for mu-
sical signals based on three physical principles. The three prin-
ciples could be interpreted as reasonable prior distributions for
all parameters in the generative spectral model. Instead of using
an analytical approach, we optimize each hypothetical partial se-
quence based on these principles and then compare the credibil-
ity of possible combinations among F0 hypotheses using a score
function. Evaluation over a large polyphonic database has shown
encouraging results. In order to complete the F0 estimation sys-
tem, we are continuing our studies of the estimation of the number
of sources and the integration of temporal information.
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