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ABSTRACT

Due to its simplicity and accuracy, quadratic peak interpolation
in a zero-padded Fast Fourier Transform (FFT) has been widely
used for sinusoidal parameter estimation in audio applications. In
this paper, as its natural extension, we propose a method to esti-
mate the first order amplitude and frequency modulation rates of
time-varying sinusoidal components, as well as to correct biases
in conventional amplitude, frequency and phase estimates. We de-
rive exact formulas for Gaussian windows and obtain approximate
formulas for often-used windows by introducing a simple window
adaptation scheme. Experimental results show the average estima-
tion biases of the AM and FM rates with a 30ms Hann window are
below 1% for typical AM/FM rates in speech.

1. INTRODUCTION

Sinusoidal modeling [1] has been widely used to represent the
most salient aspects of tonal sound. A key component of sinusoidal
modeling is the estimation of the parameters of multiple sinusoids.
Among various approximate maximum likelihood (ML) methods
[2], quadratic interpolation of magnitude peaks in a Fast Fourier
Transform (FFT) [1] has been widely used due to its simplicity
and accuracy, which is sufficient for most audio purposes.

However, most approximate ML methods, including quadratic
interpolation, generally assume stability of sinusoidal components
within their analysis frame. Since sinusoidal components in nat-
ural audio are more or less modulated in both amplitude and fre-
quency, we usually suffer from a well-known trade-off between
time and frequency resolutions. One natural approach to address
this problem is to introduce a higher order sinusoidal model. The
simplest extension may be to add the first order AM and FM terms
to a stable model. For example, Marques [3] and Peeters [4] pro-
pose methods to estimate the AM/FM rates with Gaussian win-
dows. Lagrange [5] proposes an empirical method with non-Gauss-
ian windows. Although their methods are effective for some lim-
ited applications, a more general, mathematically consistent and
computationally efficient method seems to be needed.

Our approach is based on the quadratic interpolation method
and extends it to the time-varying case. We first derive exact for-
mulas for AM/FM rate estimation using Gaussian windows. They
are obtained from the first and second derivatives of the magnitude
and phase spectra of the FFT, so that they can be easily calcu-
lated from the fitted quadratic polynomials. Bias correction func-
tions for the conventional sinusoidal parameters, i.e. amplitude,
frequency and phase, are also derived at the same time. We then
extend them to other often-used windows by introducing a simple
window adaptation scheme. We experimentally confirm the accu-
racy of the method with Hann windows.
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Fig. 1. Quadratic interpolation of spectral peak

2. QIFFT METHOD

The Quadratically Interpolated FFT (QIFFT) method for estimat-
ing sinusoidal parameters from peaks in spectral magnitude data
can be summarized as follows:

1. Calculate amplitude and phase spectrum of audio data, by
using a zero-padded windowed FFT (points in Fig. 1).

2. Find the maximum peak magnitude (uk0 ).

3. Quadratically interpolate the log-amplitude of the peak us-
ing two neighboring samples (dotted line).

4. Estimate the frequency and (log-)amplitude from the inter-
polation (ω̂0 and λ̂0).

5. Estimate the phase, if needed, by quadratically interpolat-
ing the phase spectrum based on the interpolated frequency
estimate (φ̂0).

6. Remove the peak from the FFT data for subsequent pro-
cessing.

7. Repeat the steps 2-6 above for each peak.

3. AM/FM RATE ESTIMATION: GAUSSIAN WINDOWS

3.1. Fourier transform of a windowed AM/FM sinusoid

Let a sinusoid with first-order AM and FM be written as

x(t) = eα0t+λ0 e j(β0t2+ω0t+φ0), (1)

where

ω0 : instantaneous frequency at t = 0,

λ0 : instantaneous log-amplitude at t = 0,

φ0 : instantaneous phase at t = 0,

α0 : amplitude change rate (ACR),

β0 : frequency change rate (FCR).
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Let a normalized Gaussian window be written as
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1√
2πσ
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2σ2 t2
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p
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e−pt2 , (2)

where σ is the standard deviation (
√

1/e width) of the Gaussian
and p

�
= 1/2σ2. The windowed Fourier transform of the AM/FMed

sinusoid can be calculated as

X(ω) =
∫

w(t)x(t)e− jωtdt = eu(ω)+ jv(ω), (3)
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is the phase term. These results are substantially the same as in
Marques [3] or Peeters [4]. Note that since the log-amplitude and
phase are both parabolic functions of the frequency ω, quadratic
interpolation is exact for a Gaussian window.

3.2. Biases in amplitude, frequency and phase

The frequency estimate in the QIFFT is the position of the maxi-
mum peak in the magnitude spectrum,

ω̂0
�
= argmax |X(ω)| = ω0 +

α0β0

p
, (6)

the log-amplitude estimate is the log-magnitude value at the peak,

λ̂0
�
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α2
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and the phase estimate is the phase value at the magnitude peak,
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α2
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)
. (8)

(The single hats denote the estimates from the original QIFFT.)
The second and third terms are non-zero when AM and FM exist,
which means all three QIFFT estimates are biased.

3.3. Estimating AM/FM rates

From Eqs.(4) and (5), the first and second derivatives of the mag-
nitude and phase spectra at the magnitude peak are calculated as

v′(ω̂0) = −α0

2p
, (9)

u′′(ω̂0) = − p

2(p2 + β2
0)
, (10)

v′′(ω̂0) = − β0

2(p2 + β2
0)
. (11)

Using these relations, α0 and β0 can be estimated as

ˆ̂α0
�
= −2pv′(ω̂0) (12)

ˆ̂β0
�
= p

v′′(ω̂0)
u′′(ω̂0)

. (13)

Table 1. Window adaptation coefficients.
Hann Hamming Blackman

ζ1 0.995354 0.995258 0.997809
ζ2 0.169257 0.132051 0.103745
ζ3 1.393056 1.285090 1.210194
ζ4 0.442406 0.343335 0.230884
ζ5 -0.717980 -0.779015 -0.826779
ζ6 -0.251620 -0.234583 -0.246220
ζ7 0.177511 0.186698 0.202421
ζ8 0.158120 0.197343 0.183014
ζ9 -0.503299 -0.502182 -0.499939

(The double hats denote the estimates of the AM/FM model.) In
addition, we can estimate p as

ˆ̂p
�
= − u′′(ω̂0)

2
[
u′′2(ω̂0) + v′′2(ω̂0)

] . (14)

This ˆ̂p may be used to estimate the second order AM, if it is non-
negligible. Otherwise, ˆ̂p is essentially equivalent to p for Gaussian
windows.

3.4. Bias corrected estimation

The biases in the amplitude, frequency and phase estimates can be

corrected by using the above ˆ̂α0
ˆ̂β0 and p (or ˆ̂p), as
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Note that since all the estimates are based on at most the second
derivatives of u(ω) and v(ω) at the magnitude peak, they can be
easily calculated from the fitted quadratic polynomial.

4. EXTENSION TO NON-GAUSSIAN WINDOWS

4.1. Direct method

The QIFFT can be seen as approximating the nearly parabolic
shape of the spectral peak of a non-Gaussian window with the truly
parabolic shape of a Gaussian window. Therefore, a simple solu-
tion for the AM/FM estimation with non-Gaussian windows may
be direct application of the above results. However, since p is an
unknown, hypothetical parameter for a non-Gaussian window, we
need to find somehow an equivalent value for the window. Here,
we simply replace the p by ˆ̂p which can be obtained from the spec-
tral data. We refer to this method as the “direct method”.

4.2. Adapted method

As we will see later in the experiments, using the direct method,
we can estimate α0 and β0 and correct biases in ω0, λ0 and φ0 to
certain accuracies. However, especially in the estimate of β 0, there
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Table 2. Signal Parameters for experiments.
parameter distribution unit range
ω0 uniform Hz [1k, 15k]

a0(= exp(λ0)) uniform — [1, 16]
φ0 uniform rad [−π, π]
α0 Gaussian s−1 N(0, 10)
β0 Gaussian rad/s2 N(0, 2π1000)

exists a large bias even when the β 0 is reasonably small. This is
because the difference between Gaussian and non-Gaussian win-
dows strongly influences the estimates. To reduce the FCR bias as
well as remaining biases in the other estimates, we introduce ad-
justing coefficients (ζ1, ..., ζ9) to each term in the estimates by the
direct method, as

α̌0 = ζ1 ˆ̂α0 + ζ2 ∆̂
2 ˆ̂α0, (18)

β̌0 = ζ3
ˆ̂β0 + ζ4 ∆̂0

ˆ̂α0, (19)

ω̌0 = ω̂0 + ζ5
α̌0β̌0

ˆ̂p
, (20)

λ̌0 = λ̂0 + ζ6
α̌2

0

ˆ̂p
+ ζ7 log
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β̌0

ˆ̂p

)2⎤⎥⎥⎥⎥⎥⎦ , (21)

φ̌0 = φ̂0 + ζ8
α̌2

0β̌0

ˆ̂p
+ ζ9 atan

(
β̌0

ˆ̂p

)
. (22)

The coefficients ζ i are numerically determined by multiple regres-
sion analysis (MRA), as shown in Table 1. For the MRA, we
use 56,000 AM/FMed sinusoids whose parameters are randomly
given. For ω0 and φ0, we use uniform random values whose ranges
are [0, π] and [−π, π] respectively. λ0 is fixed to 0.0. For α0 and β0,
we use Gaussian random values whose means are 0 and standard
deviations are σα = 0.3/M and σβ = 4.0/M2, respectively, where
M denotes a window length in samples.

In order to reduce biases due to coarse frequency sampling in
the FFT, two extra terms, ∆̂2 ˆ̂α0 and ∆̂0

ˆ̂α0, are added to the ACR
and FCR estimates, respectively, where ∆̂0 denotes the frequency
offset of the peak of the fitted parabola from the nearest FFT bin
(Fig. 1). These terms are especially effective when a small (e.g.
less than 5) zero-padding factor is used. We refer to this method
as the “adapted method”.

5. EXPERIMENTS

For the following experiments, we prepare 1000 sinusoids sam-
pled at 44.1kHz whose parameters are randomly given. The ACRs
and FCRs are Gaussian random values and the frequencies, am-
plitudes and phases are uniform random values whose ranges are
shown in Table 2. These values are roughly equivalent to the
ACRs and FCRs in human speech [7]. To be intuitively intelli-
gible, the biases are normalized by their standard values, which
are ωs = 2π100[rad/s], as = a0, φs = π[rad], αs = 10[s−1], and
βs = 2π1000[rad/s2].

5.1. Bias in the standard QIFFT

We plot the frequency bias in the standard QIFFT with a 30ms
Hann window and 186ms FFT (8192 points) for all the 1000 sig-
nals in Fig. 2. We can confirm that the bias is on the order of
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Fig. 2. Scatter plots of the frequency bias (ω̂0) in the QIFFT.

a percent or less, and the bias does not depend on the sinusoidal
frequency itself. Note that for a stable sinusoidal component, inter-
polation bias with this zero-padding factor would be below 0.01%
[6]. Increased zero padding does not eliminate this AM/FM bias.
The amplitude and phase biases reveal similar trends.

5.2. Bias in the direct method

The biases in the frequency, ACR and FCR estimates by the direct
method are shown in Fig. 3. Comparing with Fig. 2, we can con-
firm that the maximum bias in the frequency is reduced to below
0.1%. The ACR bias is around 3%, whereas the FCR bias is maxi-
mally over 100%. This is because the FCR bias is correlated to the
FCR itself, which can be seen as the slope in Fig. 3 (bottom).

5.3. Bias in the adapted method

The same plots for the adapted method are shown in Fig. 4. We can
confirm that the frequency bias is further reduced to below 0.02%,
the ACR bias is slightly reduced to around 2%, and the FCR bias is
greatly reduced to around 2%. The slope in the FCR bias in Fig. 3

is corrected by the multiplicative coefficient to ˆ̂β0. The width of
the distribution of the ACR and FCR biases are narrowed by the
extra terms in Eqs.(18) and (19).

5.4. Comparison of different window lengths

Figure 5 shows the biases in the three methods with Hann windows
of various lengths. The FFT sizes are set to the minimum power-
of-twos greater than 5 times the window lengths. We can confirm
that the adapted method gives the best estimates for most of the
sinusoidal parameters and window lengths. We can also see that a
longer window in general worsens the biases. This is because we
linearly correct the difference between Gaussian and non-Gaussian
windows, while the differences are essentially nonlinear. For the
same reason, we see that FCR estimates by the direct method sur-
pass those by the adapted method for windows longer than 75ms
for this FFT length.

If we accept on the order of one percent error, the frequency,
amplitude and phase estimates in the adapted method can be re-
liably used up to window lengths of 90ms. The ACR and FCR
estimates, however, can be used only up to 45ms.

6. SUMMARY

In this paper, we proposed a method to estimate AM/FM rates and
correct biases in frequency, amplitude and phase estimates based
on the QIFFT. Major advantages of this method are 1) applicable
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Fig. 3. Scatter plots of the biases in the direct method: frequency

( ˆ̂ω0) (top), ACR (ˆ̂α0) (middle), FCR (ˆ̂β0) (bottom). Note that the
vertical scale in the top figure is different from Fig. 2.
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Fig. 5. RMS biases with Hann windows of various lengths.

to commonly used (non-Gaussian) windows, 2) computationally
efficient (since no iterative operation is needed), and 3) accurate
enough for many audio applications. For further improvement,
nonlinear bias correction functions may be used. Our preliminary
experiments show sigmoid-like functions may be used to fit a wide
range of the AM/FM biases.
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