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Abstract

A stream coding framework is presented for solving the distortion-
constrained time-frequency dependent quantization problem that
naturally arises when overlapped time-frequency decompositions
are used. The main contributions of this paper are (1) an ef-
ficient rate-distortion allocation algorithm for dependent quanti-
zation when the neighborhood of dependency is large; and (2)
demonstration that a perceptual Excitation Distortion measure pro-
duces better coded audio quality than the conventional Noise-to-
Mask Ratio measure.

1 Introduction

Consider a standard transform audio coder, operating in the con-
strained distortion mode. An input file is segmented into over-
lapping frames, and a linear transform is applied to give a time-
frequency representation of the signal. For each frame, a set of
quantizers q = {qi} acting upon transform coefficients x = {xi} is
selected by an allocation algorithm to minimize some rate func-
tion R, subject to the constraint that the distortion D(x,q(x)) is
below a target threshold K. Finally, the time-domain version of
the signal is reconstructed by inverting the transform and applying
an overlap-add synthesis.

Figure 2 gives a block-diagram overview of the coding process
just described, illustrated for the case of frame-length M and 50%
overlap. Our key observation is that, given any distortion function
D, there actually exist two distortion estimates that may be sen-
sibly defined. Estimate 1 corresponds with the standard one, and
is derived from a comparison between the original spectral coef-
ficients x and the quantized spectral coefficients q(x). Estimate 2
is computed from the reference transform coefficients and a spec-
tral analysis of the final time-domain reconstruction — after the
overlap-add operation.

These two estimates are not, in general, the same, since the
reconstructed frequency coefficients after synthesis are different
from the quantized frequency coefficients. When D is perceptu-
ally motivated, then it is also clear that the “correct” estimate is
the one obtained after time-domain addition, corresponding as it
does to the actual signal upon which a listener performs perceptual
processing. For instance, if D is the Noise-to-Mask Ratio (NMR),
the noise factor should be computed as an end-to-end difference
between reference and reconstructed spectra; similarly, if D is the
dB-distance between two excitation patterns, as introduced in [2],
then comparison must occur between the excitation pattern of the
original signal, and the excitation pattern of the final, coded sig-
nal as presented to the ear. The intermediary quantized frequency
spectrum q(x), alone, has little perceptual value, being merely a
by-product of the particular signal decomposition.

If we agree to use the end-to-end distortion estimate 2 over the
standard estimate 1, a number of important ramifications result.
The most significant one is that the quantization problem becomes
time-frequency dependent. Indeed, from Figure 2, it is readily seen
that each of the M reconstructed frequency coefficients of frame n
are functionally dependent not only on the M quantized transform
coefficients in frame n, but the M quantized coefficients in both
frame n− 1 and n + 1. Moreover, the range of dependency does
not decrease with smaller overlap; independence occurs only in
the case of zero overlap.

Other problems arise in relation to the constrained-distortion
coding mode. While the end-to-end distortion estimate D′ is cor-
related with the standard estimate D(x,q(x)), and indeed D = 0
if and only if D′ = 0, the two measures will not generally agree.
For example, a bit allocation satisfying D < K will not in general
satisfy D′ < K. Figure 1 provides one such example. Here, a coder
using a 50% overlapped DFT decomposition obtains quantization
parameters for a speech file such that the NMR distortion D before
overlapped synthesis is below 1, for all frames — i.e. noise is be-
low masking threshold. This threshold is violated for a number of
frames, however, upon calculation of the end-to-end NMR D′.
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Fig. 1 Maximal noise-to-mask ratio as a function of frame number. Thick
line: distortion estimate 1 (NMR before overlapped synthesis); thin line:
distortion estimate 2 (NMR after synthesis). Masking threshold corre-
sponds to the line 0 dB.

The conventional speech or audio coder is a “frame-by-frame”
coder; namely, each frame is processed sequentially, and in as
much that there is any dependence between frames, only past
frames n−1,n−2, . . . can influence the coding decisions of the n-
th frame. An implication of the time-dependent structure imposed
by an end-to-end distortion measure is that constrained distortion
coding, in the sense that Dn < K for all frames n, is not generally
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Fig. 2 Transform coding process with 50% frame overlap. Because of overlap-add reconstruction, the quantized frequency coefficients are not the same as
the reconstructed frequency coefficients after synthesis.

possible with frame-by-frame coding. This is because there is no
guarantee that, even if the first n frames are quantized to satisfy
Dk < K, k ≤ n, it is possible to achieve the distortion constraint
for frame n+1, i.e. Dn+1 < K — even with lossless coding of the
(n+1)-th frame.

We shall approach the problem by renouncing frame-by-frame
coding and adopting a stream coding paradigm. That is, instead of
processing time-frames in sequence, a rate-distortion optimization
is performed over the entire audio file (or at least over segments
of a file each containing some number of frames, depending upon
delay constraints), in the time-frequency plane. Coding decisions
are made simultaneously for a group of frames, instead of indi-
vidually. The procedure will allow us to produce true, end-to-end
D-constrained files.

2 Stream Coding: Formulation

Given an input signal segment S, we assume the existence of some
(invertible) time-frequency transform producing the discrete time-
frequency representation x(ti,ω j) ≡ xi j for S, with 1 ≤ i ≤ n and
1 ≤ j ≤ m. For every (i, j) transform coefficient, we associate a
set of quantizers qi jb, parameterized by bits b, and ordered such
that limb→∞ qi jb(x) = x. Moreover, we will write b = bi j ≥ 0 as a
way of indicating the quantizer used in location (i, j), so that bi j
has the interpretation of being a bit-allocation. We define the rate

R as the average bit-allocation over the entire segment:

R =
1

nm

n

∑
i=1

m

∑
j=1

bi j (1)

Let the vector x̃i = {x̃i j}m
j=1 denote the set of quantized trans-

form coefficients, x̂i = {x̂i j}m
j=1 the set of reconstructed frequency

coefficients after overlapped synthesis, both at frame index i, and
let d(·, ·) be a distortion measure between two spectra. The end-
to-end distortion d is

d(xi, x̂i) = d(xi, x̃i−1, x̃i, x̃i+1) (2)

where we have made clear the dependency of d on three frames
of quantized coefficients. In line with the goal of distortion-
constrained coding, we define D over S as the maximum end-to-
end distortion over all time frames:

D = max
1≤i≤n

d(xi, x̂i) (3)

Now the rate-distortion optimization problem can be stated thusly:
Given a target threshold K, find a bit allocation bi j ≥ 0 such that
D < K with minimal rate R.

2.1 Optimal and Incremental Approaches to Bit Allocation

If B is the maximum number of bits b that may be allotted to
any quantizer, then an optimal, brute-force evaluation of D for all
possible combinations of bit allocation is of complexity O(Bnm),
which is of course unfeasible (nm will range in the thousands).
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Less demanding yet still optimal/near-optimal search procedures
typically involve dynamic programming. Most such methods as-
sume that the distortion function D is additively separable in the
sense that D = ∑i di(xi, x̃i), for some functions di; the requirement
allows a Lagrangian relaxation, and has resulted in some very effi-
cient algorithms, for instance that of [5]. Unfortunately, the func-
tion (3) is neither additive nor separable, the former because the
requirement of constrained distortion induces a max-type defini-
tion, and the latter because the overlapped representation induces
frame-dependencies.

A very general trellis-based approach to the min-max depen-
dent quantization problem (in both rate and distortion constrained
variants) has been formulated in [4]. While, in principle, that al-
gorithm can be applied to the non-separable distortion (3); the
large neighborhood of dependence in the time-frequency plane
introduced by frame overlap makes such an implementation pro-
hibitively complex. Indeed, the complexity of the algorithm in [4]
is of order O(nmBN), where N is the cardinality of the region of
dependence associated with each distortion point. For the problem
at hand, one might typically have 20 bit-allocation bands, with a
3-frame time-dependency, so that N = 3 ·20 = 60, which, while a
significant improvement on exhaustive search, is still entirely un-
feasible.

2.1.1 Sub-Optimal Incremental Algorithms

Given the enormous complexity of the methods presented in the
previous section, we must forego rate-distortion optimality and
make use of more heuristic procedures. One class of such methods
are so-called “greedy” algorithms.

The standard greedy search approaches the rate-distortion prob-
lem in the following way: beginning with an initial bit-allocation
bi j = 0 for all i, j, the algorithm finds the (i, j) location for which
the bit increase bi j = bi j + 1 results in a maximal decrease in dis-
tortion D. Computational complexity for this algorithm is upper-
bounded by O(B(nm)2), which is large but feasible.

Unfortunately, while performing well for independent quantiza-
tion problems, the greedy algorithm can fail to halt for dependent
quantization problems [2]. In particular, allocation distributions
can arise such that for no time-frequency location does the bit in-
crease bi j = bi j + v result in a decrease in distortion, for any posi-
tive integer v. This phenomenon is more or less the consequence of
trying to minimize an irreducibly multivariate, non-separable dis-
tortion function by checking changes in the objective function only
along the axial directions (1,0,0,. . . ), (0,1,0,0,. . . ), (0,0,1,0,0,. . . ),
etc. Indeed the very notion of separability implies a function that
is “naturally” oriented along axial directions, and hence the greedy
search tends to work well for separable distortion functions. The
converse is that greedy search tends to perform poorly or not at all
for non-separable functions, and in particular cannot be applied to
the distortion function (3).

2.1.2 Forward-Backward Allocation

The idea of a “reverse” greedy algorithm may have first been pro-
posed in [2], though the procedure was there formulated only for
a distortion measure of specific type. However, the experimental
results therein showed that reverse allocation could meet distortion
targets at approximately 50% the rate of a suitably defined multi-
coefficient (forward) greedy algorithm. We now provide a general

formulation for a reverse-type incremental algorithm, applicable
for the bit allocation of a wide range of distortion measures.

The basic idea is extremely simple and consists of the follow-
ing: we first obtain, by any method, a bit allocation satisfying
the distortion constraint without necessarily worrying about rate-
optimality. This bit allocation is used as an initialization to a
de-allocation procedure, which successively removes bits until the
distortion constraint K is breached. More specifically, at each iter-
ation a bit is removed from the location (i, j) which results in the
smallest updated distortion. The process continues until the condi-
tion D < K is first violated; the last allocation for which the target
is achieved is retained.

There are a variety of ways to obtain the initializing bit distri-
bution. In [2] an initialization was found by utilising the fact that,
under certain conditions, there exists a simpler separable function
D′ that can over-bound the non-separable distortion measure D.
A standard forward greedy algorithm applied to the resulting
independent quantization problem induced by D′ obtained the
desired initialization. With general distortion measures, one does
not always have the luxury of such a structure. There always
exists one crude estimate, however: simply set bi j = B,∀i, j with
B sufficiently large. A more intelligent design is to use some type
of forward multi-allocation procedure:

Algorithm 3.1 (Forward Search)
Given a distortion target K,

1. Initialise bi j = 0, ∀i, j

2. Compute D using bit allocation bi j for all i, j.

3. If D < K, exit. If not, locate i∗ = argmaxi di.

4. Find the set P of all indices (i, j) such that di∗ is a function of
qi j.

5. Increment bi j = bi j +1, ∀(i, j) ∈ P .

6. Go to Step 2.

Step 4 of the algorithm involves finding the dependency neigh-
borhood for di; when the coding process involves an overlapped
representation with overlap O such that 0% < O≤ 50%, this neigh-
borhood is always given by P = {(i, j) : i∗ −1 ≤ i ≤ i∗ +1}, i.e. a
3-frame dependency. The above initialization algorithm is guaran-
teed to converge as long as the distortion function d of (3) satisfies
the continuity requirement limx→y d(x,y) = 0 and the upper bound
B on the number of bits is chosen sufficiently large.

We now give a formal description of the de-allocation phase, in
the process introducing a complexity-scaling partition that allows
the user to trade-off time-complexity for rate-distortion optimality.

Algorithm 3.2 (Backward Search)
We assume that some initialization process has already arrived at
a bit allocation bi j satisfying D < K. Begin by partitioning the
set of time-frequency locations into disjoint sets Ak,1 ≤ k ≤ L.
Define the function Tbi j as the updated distortion D when the bit
allocation bi j is replaced with bi j − 1 (only in the (i, j) location)
if bi j ≥ 1 and when the updated distortion satisfies D ≤ K; define
Tbi j = ∞ otherwise.

1. FOR k = 1..L

Compute Tbi j for all (i, j) ∈ Ak.

Find (i∗, j∗) = argmini, j Tbi j .
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Set bi∗ j∗ = bi∗ j∗ −1 if Tbi∗ j∗ < ∞.

END

2. If bi j changed for at least one location (i, j), go to Step 1. If
not, exit.

We shall call the concatenation of Algorithm 3.1 and 3.2 by the
name “Forward-Backward Greedy Algorithm”. It is a rather gen-
eral procedure which can be applied to any constrained-distortion
coding problem, without any separability requirements on the dis-
tortion function. The algorithm is guaranteed to halt in a finite
number of iterations, for any distortion target K, unlike the for-
ward greedy search.

The partitioning of the time-frequency locations into sets Ak
provides a way of trading off computational effort and rate-
distortion optimality. The main point to the partitioning is in re-
ducing the number of distortion evaluations required before re-
moving one bit. For instance, if L = 1 and one takes A1 the entire
set of indices over the file segment S, the algorithm must test every
location in the file before de-allocating a single bit. On the other
hand, by choosing a fine partition so that A = maxk |Ak| is small,
the algorithm is required at most to evaluate the distortion A times
before attempting to remove a bit. Thus the latter algorithm is po-
tentially nm/A times faster than the former. However, because the
size of the search-field is reduced, it will tend to remove relatively
fewer bits before exceeding the distortion constraint.

The complexity of the forward phase is no more than O(Bnm),
while the complexity for de-allocation is no more than O(B(nm)2).
The total complexity of the forward-backward greedy algorithm is
therefore no more than that O(B(nm)2) — the same as the standard
greedy algorithm. Depending on how well localised the neighbor-
hood of dependence is, a careful implementation of the partition-
ing {Ak} can obtain O(ABnm), so that it is even possible to have
linear complexity O(Bnm) in some cases by using the finest par-
tition Ak possible: each Ak containing exactly one time-frequency
location.

3 Experimental Results

The stream coding framework can be applied to gauge the relative
performance of any two distortion functions in the audio coding
context. We shall compare coding results for two different distor-
tion measures (d in (2)): (1) the standard NMR measure, and (2)
a distortion measure posed entirely in the perceptual domain, fol-
lowing [1], [2]. For the latter, define the Excitation Distortion (ED)
to be the maximum dB-difference between reference and coded
excitation patterns; in symbols:

dED = max
j

∣
∣10log10

(
Ej/Ê j

)∣∣ (4)

where Ej and Ê j are the excitation powers respectively of the ref-
erence signal x and the reconstructed spectrum x̂, at frequency j.

We use a transform coder with uniform scalar quantizers in the
discrete Fourier domain, frames overlapped at 50%, and 18 sub-
bands of unit critical bandwidth partitioning the frequency interval
[0,4000] Hz. Each sub-band is parameterized by a step-size δ, and
a single bit quantum is associated with an increase or decrease of
quantizer step-size by the factor 0.9. The Glasberg-Moore exci-
tation model [3], with small variations, is used to compute high-
resolution excitation and masking patterns (in conjunction with an

appropriate masking offset) required in the calculation of DED and
DNMR, respectively.

Since the excitation pattern is a function only of the power spec-
trum of a signal, the distortion measure (4) is phase-blind. As a
consequence, we restrict ourselves in this experiment by examin-
ing how each distortion measure evaluates magnitude-distortion
only, placing the quantizers in the magnitude Fourier domain
and assuming perfect phase coding. In each case, the Forward-
Backward Greedy algorithm is applied to find, given a target K,
the step-size parameters necessary to drive D < K. Given the defi-
nition of the global file distortion in (3) as the maximum distortion
over all time frames, the coded files will be such that the end-to-
end NMR and ED patterns are no greater than K, in both time and
frequency.

To compare files coded to different distortion targets, one may
use the average bit allocation measure of (1). More realistically,
given the coded file, we compute the empirical entropy of the
quantized levels for each frequency bin; the resulting average en-
tropy over all bins will be used as our measure of rate, which em-
ulates the rate of a coder in which the levels are Huffman coded.

For each audio segment, three ED targets were fixed at
ED=3.83, ED=2.85, and ED=2.23, the forward-backward rate-
distortion allocation performed, and the resulting empirical en-
tropies recorded. These three target levels roughly correspond to
coding levels ranging from low to high quality. The NMR distor-
tion target K was then tuned so that the resulting empirical entropy
of the NMR-coded files matched those of the ED-coded files. The
following table gives an example of the distortion targets necessary
to produce matched-entropy pairs in the case of a trumpet file.

Table 1 Distortion Targets for Trumpet File

Entropy (bits/coeff.) ED Target NMR Target (dB)

0.33 3.83 6.90
0.42 2.85 5.56
0.56 2.23 3.80

Five different audio selections were tested: (1) male speech,
(2) vocal quartet, (3) trumpet, (4) orchestra, (5) organ, for a total
of fifteen constrained-distortion, matched-rate pairs. An informal
subjective listening test revealed that, for all files, and at all the
prescribed rates, the quality of ED coding was higher than that of
NMR. The quality improvement of ED over NMR increased as
the rate dropped, corroborating the observations contained in [1]
concerning the inadequacies of NMR for non-transparent-quality
audio coding.
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