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ABSTRACT

In this paper we propose a rate-distortion optimal algorithm
for sinusoidal modeling of audio and speech. The algorithm
determines for a pre-specified target bit-rate the optimal
(variable-length) time segmentation, the optimal distribu-
tion of sinusoidal components over the segments and the
optimal (scalar) quantizers for quantizing the sinusoid pa-
rameters. The optimization is done by jointly optimizing
the segment lengths, number of sinusoids and quantizers
using high-resolution quantization theory and dynamic pro-
gramming techniques, which makes it possible to solve the
algorithm in polynomial time. A particular advantage of
the proposed method is that it solves the problem of, given
a target bit-rate, finding the optimal balance between total
number of sinusoids and number of bits per sinusoid.

1. INTRODUCTION

Sinusoidal modeling has proven to be an efficient technique
for coding speech signals [1]. More recently, it has been
shown that this method can also be exploited for low-rate
audio coding [2, 3]. To account for the time-varying na-
ture of the target signal, the sinusoidal analysis/synthesis
is done on a (possibly variable-length) segment-by-segment
basis, where each segment is modeled as a sum of sinusoids.
After modeling, the sinusoid parameters are quantized and
entropy coded.

The problem of optimally finding a variable-length seg-
mentation and distributing a limited number of sinusoidal
components over those segments has been studied in [4],
where an algorithm has been presented that minimizes the
total distortion subject to a bit rate constraint. This is
done by jointly optimizing the segment lengths and num-
ber of sinusoids per segment using dynamic programming
techniques, which makes it possible to solve the problem in
polynomial time. With respect to quantization of the sinu-
soid parameters, optimal quantizers are presented in [5] (for
amplitude and phase only) and [6] (amplitude, phase and
frequency). These optimal quantizers, however, can only be
computed if the sinusoids to be quantized are known.

Although the schemes mentioned above for quantiza-
tion of sinusoid parameters and finding the segmentation
and distribution of sinusoids over segments are individually
optimal, they are not jointly optimal. Indeed, the scheme
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in [4] for finding an optimal segmentation and distribution
of sinusoids requires knowledge of the cost in terms of rate
and distortion of each and every candidate sinusoid. How-
ever, in order to determine this rate and distortion we need
to know how the sinusoids are distributed. In other words,
the optimal quantization and distribution of sinusoidal com-
ponents depend on each other and need, therefore, to be
optimized jointly.

In this paper we consider the joint optimization of time-
segmentation, distribution of sinusoids and quantization of
sinusoid parameters. We restrict ourselves to amplitude
and phase quantization only, although the incorporation of
frequency quantization is straightforward once the optimal
frequency quantizers are known. To account for human
auditory perception and variable-length segments, we de-
fine an appropriate norm on the signal space that depends
on both the analysis window and the masking threshold
[7]. Similar to the algorithm proposed in [4], the algorithm
presented here has a searching complexity of only O(M2),
where M is the total number of allowed segment boundaries
throughout the signal, rather than O(2M ) which would be
needed for an exhaustive search.

2. HIGH-RESOLUTION QUANTIZATION
THEORY

In order to minimize the quantization distortion subject to
an entropy constraint, we have to define a proper distor-
tion measure. To do so, we define a norm on our signal
space which incorporates both perception and the effect of
windowing as

‖x‖2 =

Z 1

0

â(f)| ˆ(wx)(f)|2df, (1)

where ˆ indicates the Fourier transform operation, w is a
window defining the signal segment, and â is a weighting
function representing the sensitivity of the human auditory
system which we select to be the inverse of the masking
threshold [7]. By doing so, regions in which the auditory
system is less sensitive will contribute less to the total dis-
tortion as compared to regions in which the auditory system
is more sensitive.

Quantization distortion

In order to determine the quantization distortion, we will
first consider the case where the input signal consists of
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a single complex exponential, and later generalize this to
the practically more relevant case where the input signal
consists of several sinusoids. To do so, let x = aei2πφei2πν(·)

be the input signal, a ≥ 0 and φ, ν ∈ [0, 1), and let x̃ =

ãei2πφ̃ei2πν(·) denote the quantized version of x. Given x̃,
we can compute the quantization distortion, which is given
by

d(x, x̃) = ‖x − x̃‖2

=

Z
â(f)|aei2πφ − ãei2πφ̃|2|ŵ(f − ν)|2df

= cν |aei2πφ − ãei2πφ̃|2,

where cν =
R

â(f)|ŵ(f − ν)|2df = ‖ei2πν(·)‖2 > 0. Hence,
the (perceptual) distortion is given by the squared differ-
ence between the original and quantized complex ampli-
tude, multiplied by a constant cν which depends on both
the analysis window and the masking threshold.

In this paper, we define our amplitude and phase quan-
tizer as consisting of a doubly indexed set of cells C = {ck,l :
k, l ∈ Z} together with a corresponding set of reproduction

points R = {rk,l = ãk,le
i2πφ̃k,l : k, l ∈ Z}. The expected

distortion, say D, can then be computed as the average
distortion over all quantization cells, that is,

D(x, x̃) = E‖x − x̃‖2

= cν

X
k

X
l

Z Z
ck,l

fA,Φ(a, φ)|aei2πφ − ãk,le
i2πφ̃k,l |2dadφ.

If we assume that the amplitude and phase quantizer step
sizes, ∆ak,l and ∆φk,l

respectively, are sufficiently small,
the pdf fA,Φ is approximately constant within each quanti-
zation cell (high-resolution assumption), the expected dis-
tortion D may be approximated by

D(x, x̃) ≈

cν

Z Z
fA,Φ(a, φ)

„
g−2

A (a, φ)

12
+ a2 g−2

Φ (a, φ)

12

«
dadφ,

where gA and gΦ are the (unnormalized) quantizer point
densities [8, 9] which when integrated over a region S gives
the total number of quantization levels within S. In the case
of one-dimensional quantizers, this means that the quan-
tizer step sizes are simply given by the reciprocal values of
gA and gΦ evaluated at a and φ, respectively.

In the case of sinusoidal modeling, the input signal gen-
erally consists of multiple, say L, exponentials, that is,

x =

LX
l=1

ale
i2πφlei2πνl(·).

In this case, the total quantization distortion consists of the
quantization distortion of the individual components plus
a contribution due to the mutual interaction of the compo-
nents. The mutual interaction, however, can in most prac-
tical situations be neglected [10] so that the total distortion

simply becomes

D(x, x̃) ≈
LX

l=1

cνl

Z Z
fAl,Φl (a, φ)·

 
g−2

Al
(a, φ)

12
+ a2

g−2
Φl

(a, φ)

12

!
dadφ, (2)

where we have introduced the subscript l for reference to
the lth sinusoid.

Entropy

In order to compute the entropy H of the reproduction
points R, let pk,l = P (rk,l) = P (aei2πφ ∈ ck,l) denote the
probability that the complex amplitude aei2πφ lies in cell
ck,l. Under high-resolution assumptions, the probabilities

pk,l can be approximated by pk,l ≈ fA,Φ(ãk,l, φ̃k,l)∆ak,l∆φk,l

so that, assuming that entropies are additive over sinusoidal
components1, the total entropy of the sinusoid parameters
becomes

H =

LX
l=1

„
h(Al, Φl) +

Z Z
fAl,Φl (a, φ) log(gAl(a, φ))dadφ

+

Z Z
fAl,Φl(a, φ) log(gΦl(a, φ))dadφ

«
, (3)

where h(Al, Φl) is the differential entropy of the source vari-
ables (Al, Φl).

3. PROBLEM STATEMENT

As mentioned before, with sinusoidal modeling the analy-
sis/synthesis of the input signal is done on a segment-by-
segment basis, with each segment being modeled as a sum
of complex exponentials. The number of sinusoidal com-
ponents per segment is finite so that, in general, the mod-
eled signal is only an approximation of the input signal.
Clearly, this modeling error, which we will denote by D(m),
depends on both the segmentation and the number of com-
ponents used. After quantizing the sinusoid parameters, the
total distortion introduced is thus a combination of model-
ing and quantization distortion, the latter denoted by D(q).
Under high-resolution assumptions, the quantization error
behaves much like random noise (it has small correlation
with the modeled signal and has approximately a flat spec-
trum), leading to an additive-noise model of quantization
noise. Consequently, we assume that the total distortion
introduced by modeling and quantization can be approxi-
mated by the sum of the two distortions.

The problem we consider in this paper is how to find
the time-segmentation and given this segmentation, the dis-
tribution of (quantized) sinusoidal components that mini-
mizes the total distortion (modeling and quantization dis-
tortion) such that the associated number of bits needed
to uniquely decode the quantized signal x̃ does not ex-
ceed a predefined target rate, say Rt. In order to solve

1In the work presented here we restrict ourselves to indepen-
dent coding of the sinusoid parameters and do not exploit the
fact that in practical situations redundancy between parameters
can be removed.

III - 194

➡ ➡



this problem we need to formalize it. To do so, let s =
{s1, s2, . . . , sK} denote a particular time segmentation of
the input signal consisting of, possibly variable-length, dis-
joint segments sk, where each sk is restricted to be an in-
teger multiple of a predefined length. Moreover, denote
by cs = {L1, L2, . . . , LK} a particular distribution of sinu-
soidal components over the segmentation s, where Lk de-
notes the number of components assigned to segment sk.
In addition, let gA,s = {gA,s1 , gA,s2 , . . . , gA,sK} and gΦ,s =
{gΦ,s1 , gΦ,s2 , . . . , gΦ,sK }, where gA,sk = {gAk,1 , gAk,2 , . . .,
gAk,Lk

} and gΦ,sk = {gΦk,1 , gΦk,2 , . . . , gΦk,Lk
} denote a par-

ticular set of quantizer point densities for amplitudes and
phases, respectively, for segment sk. With these definitions,
the formal problem statement can be written as

min
s

min
cs

min
gA,s

min
gΦ,s

“
D(m) + D(q)

”
subject to H ≤ Rt

. (4)

The standard approach to solve the constrained problem
(4) is to introduce a Lagrange multiplier λ > 0 and to

minimize the Lagrangian cost functional J(λ) = D(m) +

D(q) + λH where λ should be chosen such that the entropy
constraint H = Rt is met. The problem formulation in
(4), however, is an NP hard problem since the searching
complexity for finding the optimal segmentation is O(2M ),
where M is the total number of allowed segment boundaries
throughout the signal. In order to solve (4) in polynomial
time we, therefore, follow the approach in [4] and assume
that entropies and distortions are additive and independent
over segments, that is,

D(m) =

KX
k=1

D
(m)
k , D(q) =

KX
k=1

D
(q)
k and H =

KX
k=1

Hk,

with D
(q)
k and Hk given by (2) and (3), respectively. With

these definitions, the total Lagrangian cost functional J(λ)
is additive over segments as well. Hence, since entropies and
distortions are assumed to be independent over segments
and D(m) depends only on s and cs but not on gA,s and
gΦ,s, we can write our minimization problem as

min
s

min
cs

min
gA,s

min
gΦ,s

J(λ) =

min
s

KX
k=1

min
Lk

„
D

(m)
k + min

gA,sk

min
gΦ,sk

“
D

(q)
k + λHk

”«
. (5)

In words, (5) says that we first have to find, for each and ev-
ery segment sk, the optimal quantizer point densities gAk,l

and gΦk,l , next the optimal number of components Lk, and
finally the best segmentation s. After this, however, we
have to determine the optimal value of λ which, as we will
show in Section 5, is a convex optimization problem which
can be solved using standard techniques like the bisection
method or Newton’s method. Note that the right-hand side
of (5) describes a minimization of an additive sum of inde-
pendent terms, which suggests to use the approach of dy-
namic programming. By doing so, the searching complex-
ity for the best segmentation is only O(M2), rather than
O(2M ) which would be needed for an exhaustive search.

4. OPTIMAL QUANTIZATION POINT
DENSITIES

By inspection of (5), we conclude that the optimal quanti-
zation point densities are found by solving

min
gA,sk

min
gΦ,sk

“
D

(q)
k + λHk

”
, (6)

for all sk. The optimal densities are found using elementary
calculus of variations [11], yielding

gAk,l =

„
cνk,l

6λ log(e)

« 1
2

, (7)

and

gΦk,l =

 
a2cνk,l

6λ log(e)

! 1
2

= agAk,l , (8)

where the indices k = 1, . . . , K and l = 1, . . . , Lk refer to
a particular segment and component within that segment,
respectively. In the case that the distribution of the si-
nusoids is known, the optimal λ is found by substitution
of (7) and (8) into (3) for each and every segment sk and
equate the total sum over all segments to Rt, the total tar-
get rate. However, in the optimization problem at hand,
this distribution is not known in advance so that we cannot
analytically determine the optimal λ and thus the optimal
point densities. We can, however, overcome this problem,
as we will show in the next section, by iteratively finding
the optimal λ.

5. FINDING THE OPTIMAL λ

Let us assume that we are given a particular value of λ.
Given λ, we can compute the quantization point densities
gAk,l and gΦk,l which are given by (7) and (8), respectively.
These densities, however, are optimal with respect to a tar-
get rate R′

t �= Rt, unless λ is optimal. Clearly, in that case
the entropy and quantization distortion can be calculated
for each and every possible sinusoidal component and is
given by

Hk,l = h(Ak,l, Φk,l) + b(Ak,l) + log(cνk,l) − log(6λ log(e)),

and
Dk,l = λ log(e),

respectively, where b(Ak,l) =
R

fAk,l (a) log(a)da. Note that
the quantization distortion in this case is independent of k
and l. Hence, in the optimal case, all sinusoidal components
contribute equally to the total distortion, as is to be ex-
pected since the norm defined in (1) is a weighted squared-
error distortion measure. Hence, for a given value of λ,
we are able to solve (5), resulting in a particular segmen-
tation, distribution of sinusoids and corresponding optimal
quantizers. The associated bit rate is given by

R′
t = H(λ) =

pX
k=1

LkX
l=1

(h(Ak,l, Φk,l) + b(Ak,l)

+ log(cνk,l) − log(6λ log(e))
´
.

In the case that H(λ) �= Rt, we can modify λ and determine
the optimal densities for the modified λ and repeat this
procedure until the target rate Rt is met.
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Figure 1: Rate-distortion curves for both the optimal situ-
ation and the situation of a fixed number of bits per com-
ponents.

6. EXPERIMENTAL RESULTS

In this section we discuss experimental results obtained
by computer simulations. The test excerpt used for the
experiments is 48 kHz sampled contemporary pop music.
Sinusoidal components were extracted using the psycho-
acoustical matching pursuit algorithm [12] with the per-
ceptual distortion measure as presented in [7]. We com-
puted the optimal time segmentation, distribution of sinu-
soids and quantizers using the theory developed above and
compared these results to the situation where quantizers
were determined independent of the time segmentation and
distribution of sinusoidal components. In the latter case,
segmentation and distribution of sinusoids is computed us-
ing the algorithm described in [4] for a fixed entropy, say
H bit, per sinusoid. Subsequently, optimal amplitude and
phase quantizers are computed using high-resolution quan-
tization theory [5, 6]. We shall refer to this scheme as the
two-stage approach. Figure 1 shows rate-distortion curves
for different values of the entropy H . As can be seen from
the figure, the optimal choice for H in the two-stage ap-
proach (right most curves) depends on the target bit rate;
for low target rates (e.g. 15 kbit/s) the choice H = 13 out-
performs the choice H = 15, whereas at higher rates (e.g.
50 kbit/s) the opposite is true. Which value to choose for
H , however, is not straightforward and must in general be
determined by trying out different values. This (exhaustive
search) can be overcome by jointly optimizing segmenta-
tion, distribution and quantization, as shown in Figure 1
(solid line). It should be noted that even in the case where
we are willing to try out many H-values, the performance
will always be less than that of the algorithm proposed here
since in the latter case the two stages are optimized jointly.
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