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ABSTRACT

Sinusoidal modelling is a key technology in low rate audio coding,

and methods for efficient quantization of sinusoidal parameters are
therefore of high importance. In this work we derive analytical for-

mulas for the optimal entropy constrained unrestricted spherical

quantizers for amplitude, phase and frequency, using a perceptual

distortion measure. This is done both for a single sinusoid, and for
multiple sinusoids distributed over multiple segments. The quan-

tizers minimize a high-resolution approximation of the expected

distortion, while the corresponding quantization indices satisfy an

entropy constraint. The quantizers turn out to be flexible and of
low complexity, in the sense that they can be determined easily for

varying bit rate requirements, without any sort of retraining or it-

erative procedures. In objective and subjective comparison tests,

the proposed method is shown to outperform an existing state-of-

the-art sinusoidal quantization scheme, where quantization of fre-
quency parameters is done independently.

1. INTRODUCTION

Parametric coding is an efficient tool for representing audio signals

at low bit rates [1, 2]. A common parametric model decomposes
an audio signal into three components: a sinusoidal component,

a noise component and a transient component, each of which are

coded by different subcoders. The sinusoidal component, repre-

sented by amplitude, phase and frequency parameters, is percep-
tually the most important of the three. Consequently, in most low-

rate audio coders the main part of the bit budget will be assigned

to this component [2]. The bit budget available for encoding of si-

nusoids is typically given a priori e.g. by a rate-distortion control
algorithm which distributes the total bit rate over the subcoders.

Therefore, it is desirable to develop simple and flexible quantizers

which can adapt to changing bit rate requirements without any sort

of retraining or iterative procedures. In this work we focus on de-

riving such efficient quantizers for the sinusoidal component, and
its corresponding parameters.

The quantization scheme that is presented in this work is called

entropy constrained unrestricted spherical quantization (ECUSQ),

and is an extension of ECUPQ (entropy constrained unrestricted

polar quantization), introduced in [3]. While in ECUPQ only am-
plitude and phase quantization was considered, in ECUSQ all three

sinusoidal parameters are quantized. The term unrestricted refers
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to the fact the sinusoidal parameters are quantized dependently. In

[3, 4], optimal quantizers are derived under a high-resolution as-

sumption, i.e. a very large number of quantization cells, which
implies that the probability density functions of the input variables

can assumed to be constant in each quantization cell. Although

the derived quantizers in [4] are flexible and of low complexity,

the distortion measure used is an �2 measure, so perceptual effects
are not taken into account.

In this work, optimal scalar quantizers are derived for ECUSQ,

using a perceptual distortion measure. More specifically, under

high-resolution assumptions, optimal amplitude, phase and fre-
quency quantizers are derived which minimize the expected dis-

tortion, while satisfying an entropy constraint. This is done both

for a single sinusoid, and for the more practically relevant setting

with multiple sinusoids distributed across multiple segments. For
this last case, a comparison is made between ECUSQ and ECUPQ.

The main advantage of the proposed method over ECUPQ is that

the bit distribution between amplitude, phase and frequency does

not need to be given a priori, but follows as a result of the derived

formulas. In contrast, ECUPQ describes the optimal bit distribu-
tion between amplitude and phase, but does not specify the share

of the bit budget that should be assigned to frequency, this needs

to be chosen a priori.

2. ENTROPY CONSTRAINED UNRESTRICTED
SPHERICAL QUANTIZATION

2.1. High-rate expression for the average distortion - single si-
nusoid

In this section we derive a high-resolution approximation for the

average distortion in the case where the target signal consists of
one single sinusoid, using the perceptual distortion measure. Later,

we will generalize our results and consider the more practically

relevant situation where the target signal is represented by several

sinusoids. The perceptual distortion measure is given by

d(ε) =

∫ 1

0

â(f)|ŵε(f)|2df, (1)

and was introduced in [5]. In (1) ε(n) denotes the difference be-
tween the original and quantized spherical representation of a com-

plex sinusoid, denoted by aej(νn+φ) and ãej(ν̃n+φ̃) respectively,

for n = n0, . . . , n0 +N−1. Here a, φ and ν are amplitude, phase

and frequency respectively, n0 ∈ Z, and N is the framelength.

Furthermore, w is the analysis window used and â(f) is defined
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as the inverse of the masking threshold sampled at frequency f .

For N → ∞ the power spectrum of the windowed error signal

|ŵε(f)|2 will converge to a sum of delta-functions at frequen-
cies ν and ν̃. This, in turn, means that the side lobes of |ŵε(f)|2
can be neglected, and the widths of the main lobes are sufficiently

small to assume the masking threshold to be constant across a main

lobe. Due to high-resolution assumptions and the slowly changing
masking curve, we can also assume that â(ν) ≈ â(ν̃). Hence we

can approximate d(ε) by

d(ε) ≈ â(ν̃)

∫ 1

0

|ŵε(f)|2df = â(ν̃)

n0+N−1∑
n=n0

|w(n)ε(n)|2 ,

for N sufficiently large. With this approximation, the expected
perceptual distortion is given by

D = E (d(ε)) =

∫∫∫
fA,Φ,F (a, φ, ν)d(ε)dadφdν, (2)

where fA,Φ,F (a, φ, ν) is the joint probability density function of
amplitude, phase and frequency. In the same way as done in [4],

we obtain the following high-resolution approximation for the ex-

pected distortion

D ≈‖w‖2

12

∫∫∫
fA,Φ,F (a, φ, ν)â(ν)

(
g−2

A (a, φ, ν)

+a2
(
g−2
Φ (a, φ, ν) + σ2g−2

F (a, φ, ν)
) )

dνdφda,

(3)

where σ2 = 1
‖w‖2

∑n0+N−1
n=n0

w(n)2n2. In this derivation we

used high-resolution assumptions and hence substituted quantiza-
tion step sizes by so-called quantization point density functions

[6, 7] gA, gΦ and gF , which when integrated over a region S
gives the total number of quantization levels within S. In the case

of scalar quantizers, this means that the quantizer step sizes are
just given by the reciprocal values of the point densities, that is,

g = ∆−1. In high-resolution theory, quantizers are described by

these density functions, without exactly specifying the location of

the quantization points. Note that since we consider unrestricted
quantization, the quantization point density functions depend on

all three parameters.

2.2. Entropy-constrained minimization of the average distor-
tion - single sinusoid

In this section we determine the quantization point density func-
tions that solve

min
gA,gΦ,gF

D subject to H(Ã, Φ̃, F̃ ) ≤ Ht (4)

where Ht is the given total target entropy, and H(Ã, Φ̃, F̃ ) is the

joint entropy of amplitude, phase and frequency quantization in-

dices where Ã, Φ̃ and F̃ denote their corresponding alphabets,

respectively. As in [4] the joint entropy H(Ã, Φ̃, F̃ ) can be ap-
proximated, under high-resolution assumptions, by

H(Ã, Φ̃, F̃ ) ≈ h(A, Φ, F )

+

∫∫∫
fA,Φ,F (a, φ, ν) log(gA(a, φ, ν))dνdφda

+

∫∫∫
fA,Φ,F (a, φ, ν) log(gΦ(a, φ, ν))dνdφda

+

∫∫∫
fA,Φ,F (a, φ, ν) log(gF (a, φ, ν))dνdφda, (5)

where h(A,Φ, F ) is the joint differential entropy of amplitude,

phase and frequency, which is independent of the quantization

point density functions. The constrained minimization problem in
(4) can be turned into an unconstrained problem, using the method

of Lagrange multipliers. In this way we obtain a Lagrangian cost

function J = D + λH , where λ is the Lagrangian multiplier.

Minimizing this cost function by evaluating the Euler-Lagrange
equations for all three quantization point densities, we obtain the

optimal high-resolution ECUSQ quantizers for the perceptual dis-

tortion measure:

gA(a, φ, ν) = gA(ν) = C(ν)2
1
3 (H̃−2b(A)−log(σ)), (6)

gΦ(a, φ, ν) = gΦ(a, ν) = agA(ν), (7)

gF (a, φ, ν) = gF (a, ν) = σagA(ν), (8)

where H̃t = Ht − h(A, Φ, F ) and b(A) =
∫

fA(a) log(a)da are

introduced for notational convenience. Furthermore

C2(ν) = â(ν)2−d(F ), (9)

where d(F ) =
∫

fF (ν) log(â(ν))dν. Note that since C2(ν) is
proportional to â(ν), the perceptually more important sinusoids

are quantized more finely, as compared to the �2-case [4] where

quantization is frequency independent. The minimal expected dis-

tortion for ECUSQ in the perceptual case can now be found by
substituting (6), (7) and (8) in (3):

DECUSQ =
‖w‖22− 2

3 (H̃t−2b(A)− 3
2 d(F )−log(σ))

4
. (10)

It is easy to verify that all three parameters give exactly the same

contribution to this distortion. Furthermore, it is not difficult to
show that if w is an evenly symmetric window, the distortion (10)

is minimal for n0 = − (N−1)
2

. We assume this to be the case in

the remainder of this work.

2.3. Multiple sinusoids in multiple segments

In sinusoidal coding an input signal is split up into a number of

consecutive segments of variable length and each segment is then
modelled as a sum of sinusoids. The quantization distortion in a

segment consists of the quantization distortion of the individual

components plus a contribution due to the mutual interaction of

the components. As shown in [8] this mutual interaction can be
neglected if the sinusoids are spaced sufficiently far apart in the

frequency domain. For practical purposes this is the case if the

sinusoids are estimated using the psycho-acoustical matching pur-

suit algorithm [9]. We also assume that entropy and distortion are
additive and independent over segments. Let K denote the number

of segments, with Lk denoting the number of sinusoidal compo-

nents in segment k. For the total quantization distortion we then

have

D ≈
K∑

k=1

Lk∑
l=1

Dk,l (11)

where

Dk,l =
‖wk‖2

12

∫∫∫
fA,Φ,F (a, φ, ν)âk(ν)

(
g−2

Ak,l
(a, φ, ν)

+ a2
(
g−2
Φk,l

(a, φ, ν) + σ2
kg−2

Fk,l
(a, φ, ν)

) )
dνdφda,
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and σ2
k = 1

‖wk‖2

∑ Nk−1
2

n=− Nk−1
2

wk(n)2n2, with Nk the length of

segment k. Furthermore wk is the analysis window used in seg-
ment k, and âk(ν) is the inverse of the masking curve correspond-

ing to segment k. We assume the joint probability density

fA,Φ,F (a, φ, ν) to be the same for all segments.

Summing (5) for each sinusoid in each segment, we can ob-

tain an expression for the total entropy in the same way. As in the

previous section we wish to determine the quantizers which mini-
mize the total distortion (11), such that the resulting total entropy

is at a pre-specified target entropy Rt. Thus we have a constrained

minimization problem which can be solved in the same way as in

the previous section, giving us the following expressions for the
optimal quantizers in this case:

gAk,l(a, φ, ν) = gAk(ν)

= ‖wk‖Ck(ν)2− 1
3 (h(A,Φ,F )+2b(A))

× 2
1
3 γ−1(Rt−

∑K
m=1 Lm(log(σm)+3 log(‖wm‖))),

gΦk,l(a, φ, ν) = gΦk(a, ν) = agAk(ν),

gFk,l(a, φ, ν) = gFk(a, ν) = σkagAk(ν),

where

Ck(ν)2 = âk(ν)2−γ−1 ∑K
m=1 Lmd(Fm),

and γ =
∑K

k=1 Lk and d(Fk) =
∫

fF (ν) log(âk(ν))dν.

3. EXPERIMENTAL RESULTS

3.1. Validity of the high-resolution approximation of the ex-
pected distortion

In this section the theoretical rate-distortion approximation derived

in (10) for a single sinusoid, is compared to a rate-distortion curve,
which is practically obtained by generating a large number of re-

alizations of single sinusoids, quantizing these sinusoids with the

derived quantizers for different target bit rates H , and measuring

the resulting quantization distortion. To do this, first let X, Y and
Z denote three independent Gaussian variables, with zero mean

and a variance of 1000.1 Transforming these variables to the spher-

ical domain, and using the rules for computing probability density

functions of a transformation of random variables, it can be shown
that the amplitude A is Maxwell distributed, the phase Φ is uni-

formly distributed on [0, 2π], and the frequency F has a probabil-

ity density function given by fF (ν) = sin(ν)
2

for 0 ≤ ν ≤ π. A

large number of triplets {a, φ, ν} is generated from these distri-

butions, and for each triplet the corresponding masking threshold

â(f) and then the value C(ν), given in (9), is computed, using
a Hanning window of length 1024. Subsequently, the triplets are

quantized using (6), (7) and (8) for a given target entropy. The

quantization distortion (1) for each triplet is determined, and aver-

aged over all triplets. Repeating this procedure for several differ-
ent target entropies Ht, we obtain a practical rate distortion curve

which is plotted in Figure 1, where we used 10000 triplets. In

the same figure the theoretical rate distortion curve given by (10)

is plotted. Clearly, the curves converge towards each other, which

verifies that the expression (10) for the average distortion is indeed
a good approximation at high rates. For low rates it is clear that

the approximation does not hold anymore.

1This variance is close to the one experienced in the simulation experi-
ments with real audio data, described in the following subsection
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Fig. 1. Theoretical versus practical distortion-rate performance for

N = 1024.

3.2. Comparison with ECUPQ

In this section we compare the proposed scheme with ECUPQ [3],

for multiple sinusoids distributed over multiple segments, using
the perceptual measure. To be able to make this comparison, we

first derive the optimal ECUPQ amplitude and phase quantizers,

for a certain target entropy Rt1 . Secondly, consider the problem

of independent quantization of frequency, and derive the corre-
sponding optimal entropy constrained frequency quantizer at a tar-

get entropy Rt2 , where Rt1 + Rt2 = Rt, the total target entropy

in the ECUSQ scheme. In this way, we obtain a second scheme of

three quantizers, where amplitude and phase are quantized depen-

dently, but independently of frequency. The most important advan-
tage the proposed method offers over the ECUPQ method is that in

the proposed scheme the bit distribution between amplitude, phase

and frequency follows directly from the derived formulas. In con-

trast, as ECUPQ was derived for optimal quantization of amplitude
and phase, ECUPQ describes the optimal bit distribution between

these two parameters, but does not specify the share of the total bit

budget that should be assigned to frequency parameters.

Given a real audio signal, we determine the optimal segmen-

tation and the optimal number of sinusoids on each segment, such

that the modelling distortion is minimal. Here the sinusoids are
estimated using the psycho-acoustical matching pursuit algorithm

[9], and the optimal segmentation and distribution of sinusoids is

formed using the dynamic programming based algorithm in [10].

The resulting segmentation and distribution of sinusoids, is the
fixed input to our quantizer schemes. After quantizing the sinu-

soids with both schemes, we can measure the total distortion by

computing the perceptual error (1) for each sinusoid, and then

adding these errors over segments and sinusoids, where we use

the assumption that distortions are additive. In Figure 2 the total
distortions of the two schemes are plotted against the target rate

per sinusoidal component, for a female speech signal sampled at

44.1 kHz. In this plot, five different bit distributions are consid-

ered for the ECUPQ scheme, where distributions are represented
by the percentage of the rate that is assigned to frequency. Clearly,

the proposed scheme performs better for this audio fragment, in-

dependent of what distribution is chosen in the ECUPQ scheme.

Note also that the optimal distribution in the ECUPQ scheme is
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Fig. 2. ECUSQ versus ECUPQ for a female speech signal sampled
at 44.1 kHz.

dependent on the bit rate, i.e. no fixed distribution is optimal. This
is a considerable problem since the distribution needs to be chosen

a priori in this method. Furthermore, even if the optimal bit distri-

bution for ECUPQ is known (i.e. by doing an exhaustive search),

the proposed scheme still performs better, which is due to jointly
optimizing for all three parameters.

Since we use a perceptual distortion measure, a listening test

was performed to compare both schemes. Six excerpts were in-

cluded in this test: castanets, contemporary pop, Celine Dion,
harpsichord, Carl Orff (classical) and female speech, all sampled

at 44.1 kHz. For each excerpt, the optimal segmentation and dis-

tribution of sinusoids was determined, resulting in a certain mod-

elling distortion. After quantizing the modelled signals with both
schemes, the modelling error was added, such that the difference

between the resulting signals and their original versions is due to

quantization distortion. In the listening experiment, the original

signal was put in as a reference (known to the listeners), in com-

parison to which the participants ranked the quantized versions of
the signal from 1 (very poor) to 5 (no difference with the original).

The target rate per sinusoid was set at 14 bits. For each fragment

3 different quantized versions were included in the test: ECUSQ,

ECUPQ at a distribution of 60% (approximately the optimal dis-
tribution at 14 bits), and ECUPQ at a distribution of 50%. Further-

more, a very poor version (ECUPQ 10 bits, 50%) was added as an

anchor signal. Eight listeners participated in the test. The results

are presented in Figure 3, where the points represent the medians
of each method, across all subjects and all excerpts, and the er-

ror bars depict the 25 and 75 percent ranges of the total response

distribution.

We see that the ECUSQ scheme performs slightly better than

the ECUPQ scheme with an optimal bit distribution. By changing
the distribution by only 10 % a considerable drop in performance

occurs for the ECUPQ scheme. We conclude from this experiment

that finding the optimal bit distribution in ECUPQ is crucial for ob-

taining acceptable perceptual performance, misadjusting the dis-
tribution by even a few percents can lead to significant perceptual

performance loss. Secondly, we can see that the ECUSQ method

offers almost transparent quality at 14 bits per sinusoidal compo-

nent.
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Fig. 3. Results of the listening test at 14 bits per sinusoid.
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