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ABSTRACT

In this paper, an FIR cascade structure for adaptive linear
prediction is studied in which each stage FIR filter is inde-
pendently adapted using LMS algorithm. The theoretical
analysis shows that the cascade performs a linear predic-
tion in a way of successive refinement and each stage tries
to obliterate the dominant mode of its input. Experimental
results show that the performance of the cascade LMS pre-
dictor are in good agreement with our theoretical analysis.

1. INTRODUCTION

It is well known that linear prediction techniques have been
widely used in speech, audio and video coding [1, 2]. Re-
cently, an FIR cascade structure has been proposed for adap-
tive linear prediction to speed up the convergence and to
get much smaller mean square error (mse) than single stage
LMS predictor [4].

Later, such cascade structures like a cascade of LMS or
RLS-LMS predictors are successfully applied for lossless
audio coding and showed that their predictive coding perfor-
mances may outperform the conventional linear prediction
coding technique [5, 6].

Theoretical analysis of this cascade is made only for
a low-order example [4]. Computer simulations for syn-
thetic signals or real speech and audio signals have, how-
ever, shown that the cascade predictor behaviors more ef-
fective particularly during the initial, transient phase of the
adaptation and results in a smaller final MSE.

In this paper, we shall carry out a theoretical analysis
for this phenomenon and demonstrate formally that each
stage of the cascade structure attempts to cancel the dom-
inant mode of its input signal. The paper is organized as
follows; Section 2 will review the cascade structure. Sec-
tion 3 describes the LMS algorithm and its performance in

terms of filter weight and MSE. Section 4 presents a mathe-
matical analysis for the characterization of the cascade LMS
predictor and its property. Section 5 contains the simulation
results for synthetic and real audio signals to support our
theoretical analysis. Finally, we give a conclusion and point
out our future research.

2. THE CASCADE STRUCTURE

The structure of the cascade for the linear prediction prob-
lem can be shown in Fig.1. In the cascade, each stage of
the M sections is uses an independently adapting FIR pre-
dictor of order lk, k = 1, · · · ,M . Let xk(n) and ek(n) be
the input to stage k, and the corresponding prediction error,
respectively; it is

ek(n) = xk(n) −
lk∑

m=1

h
(m)
k (n)xk(n − m) (1)

where h
(1)
k (n), · · · , h

(lk)
k (n) are the time-varying taps of

the kth predictor. Each stage of the cascade structure sat-
isfies that xk+1(n) = ek(n); x1(n) = x(n), where x(n) is
the signal to model. The error of the last stage, eM (n) is the
global prediction error of the structure. After convergence,
h

(m)
k (n) = h

(m)
k and the global predictor transfer function

can be expressed as

Ĥ(z) =
M∏

k=1

Hk(z) (2)

where

Hk(z) = 1 −
lk∑

m=1

h
(m)
k z−m (3)

In fact, this structure is inadequate for general input signals
since the resulting prediction filters has only strictly real ze-
ros. However, there is a report that the speed of convergence
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Fig. 1. Cascade predictor.

of the cascade filter with LMS adaptation is such that its ini-
tial MSE is usually smaller than those of equivalent-order
LMS and lattice LMS predictors [5]. For each stage, the
cost function is defined as

Jk = E[e2
k(n)] = E[x2

k+1(n)] (4)

3. THE LMS PREDICTOR

Each stage performs the prediction by passing the past val-
ues through an lk-tap FIR filter, where the filter weights are
updated through the LMS weight update equation

hk(n + 1) = hk(n) + µek(n)Xlk(n − 1) (5)

where T denotes the transpose operator, Xlk(n) = [x(n −
1), x(n−2), · · · , x(n−lk)]T , and hk(n) = [h(1)

k (n), h(2)
k (n),

· · · , h
(lk)
k (n)]T .

The weight update equation is derived through a mini-
mization of the mean-square error (MSE) between the de-
sired signal and the LMS estimate, namely,

E[e2
k(n)] = E[(xk(n) − x̂k(n))2] (6)

For the simplicity, the performance of the LMS predictor
can be analyzed with ”independence assumption” [3] and
can be bounded by that of the finite Wiener filter, where
the filter weights are given in terms of the autocorrelation
matrix of the reference signal Rk, and the cross-correlation
vector between the past value and desired signals r. Explic-
itly, the weights are

hk(n) = R−1
k rk (7)

where Rk = E[Xlk(n)XH
lk

(n)] and rk = E[Xlk(n)xlk(n)].
The MSE of the LMS predictor (5) under these assump-

tions is therefore bounded by the MSE of the finite Wiener
filter, which is

E[e2
k(n)] = E[(xk(n)−x̂k(n))2] = E[x2

k(n)]−(R−1
k rk)T rk

(8)
Referring Eq.(4), we are able to write this in spectral density
function as

Jkopt =
∫ π

−π

Sxkxk
(λ)dλ −

∫ π

−π

| Hk(λ) |2 Sxkxk
(λ)dλ

(9)

4. CHARACTERIZATION OF THE CASCADE LMS
PREDICTOR

In this section, we try to prove that the cascaded adaptive
FIR filters operates a linear prediction in terms of successive
refinements. The cascaded adaptive FIR operation can be
described in the following the theorem:

Theorem 1 In the cascaded FIR filters, each stage attempts
to cancel the dominant mode of its input signal,i.e., to place
its zeros close to the dominant poles of the AR model. It
performs a linear prediction with a successful progressive
refinement strategy,i.e.,

JM (hM ) ≤ JM−1(hM−1) ≤ · · · ≤ J1(h1) (10)

Proof : Assume N the minimum description length (MDL)
of the AR model, the time series x(n), x(n−1), · · · , x(n−
N) can be realized by an autoregressive (AR) of order N as
it satisfies the difference equation

x(n) + a�
1x(n − 1) + · · · + a�

Nx(n − N) = v(n) (11)

where a1, · · · , aN are constants called AR parameters and
v(n) is white noise. The corresponding system generates
x(n) with the white noise v(n), whose transfer equation
equals

H(z) =
1

N∑
i=0

a�
i z

−i

(12)

This function is completely defined by specifying the loca-
tion of its poles, as shown by

H(z) =
1

(1 − p1z−1)(1 − p2z−1) · · · (1 − pNz−1)
(13)

The parameters p1, p2, · · · , pN are poles of H(z); they are
defined by the roots of the characteristic equation

1 + a�
1z

−1 + · · · + a�
Nz−N = 0 (14)

For the system to be stable, the roots of the characteristic
equation (13) must all lie inside the unit circle in the z-
plane, e.g., | pk |< 1, for all k = 1, · · · , N . The cascade
FIR filter (3) of order N of each stage consists to estimate
w�

1 , · · · , w�
N in the linear prediction problem

x(n) = w�
1x(n−1)+w�

2x(n−2)+· · ·+w�
Nx(n−N)+v(n)

(15)
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such that wk = −ak. The analyzer function H(z) can be
expressed into cascade form

H(z) = 1 − w�
0z−1 − w�

1z−2 − · · · − w�
Nz−N

= (1 −
l1∑

m=1

h
(m)
1 z−m)(1 −

l2∑
m=1

h
(m)
2 z−m) · · ·

=
M∏

k=1

Hk(z)

(16)
where

∑M
k=1 lk = N . We have the output at first stage

of the cascade FIR structure while the LMS predictor con-
verges to its steady-state value (Eq.7),

e1(n) =
M∑

m=1

w�
mx(n − m) + v(n)

−
l1∑

m=1

h
(m)
1 (n)x(n − m)

=
l1∑

m=1

(w�
m − h

(m)
1 )x(n − m)

︸ ︷︷ ︸
e0(n)

+
M∑

m=l1

w�
mx(n − m) + v(n)

(17)

The cost function at the first stage becomes

J1(n) = E[| e1(n) |2]
= E[| e2

0(n) + v2(n) + 2e0(n)v(n)

+2
N∑

m=l1

w�
mx(n − m)(e0(n) + v(n))

+(
N∑

m=l1

w�
mx(n − m))2 |]

(18)
According to the principle of orthogonality, at the steady-
state, E[e0(n)v(n)] = 0 and E[x(n−m)(e0(n)+v(n))] =
0. The cost function becomes

J1(n) = E[| e0(n) |2 +σ2
v(n)+ |

M∑
m=l1

w�
mx(n − m) |2]

(19)
where σ2

v(n) is the variance of the white noise v(n). We see
that J1(n) achieve its minimum, if and only if, the following
two terms are minima

J1e0(n) = E[| e0(n) |2] (20)

and

J1w(n) = E[|
M∑

m=l1

w�
mx(n − m) |2] (21)

It means that the first stage attempts to cancel the dominant
mode of its input signal,i.e., to place its zeros close to the
dominant poles of the AR model.

We look at the sufficient condition: if J1e0(n) and J1w(n)
are minima, the dominant component of input signal is re-
moved. In fact. H1(z) can be decomposed as

Ĥ1(z) = (1 − p̂1z
−1)(1 − p̂2z

−1) · · · (1 − p̂l1z
−1) (22)

The zeros | p̂k |< 1, k = 1, · · · , l1 are close to the poles
pk, k = 1, · · · , l1 in Eq.(13), which dominate the compo-
nent of the input. The rest poles pk, k = l1, · · · , N have
minimum component of the input, resulting in the minimum
J1w(n).

For necessary condition: only if, we can assume that the
zeros | p̂k |< 1, k = 1, · · · , l1 are close to the poles pk, k =
1, · · · , l1 in Eq.(13), which are not the dominant compo-
nent of the input. There are the poles in pk, k = l1, · · · ,M ,
which gives the dominant component of the input. There-
fore, there are a set of ŵk such that

|
N∑

m=l1

ŵ�
mx(n − m) |2i >|

N∑
m=l1

w�
mx(n − m) |2i (23)

The J1w(n) is not minimum. This is contradictory to the
initial assumption,i.e., the cost function J1(n) achieve its
minimum, resulting in the minimum J1w(n). Thus the first
stage will attempt to cancel the dominant mode of its input
signal,i.e., to place its zeros close to the dominant poles of
the AR model. The proof for second stage is done in same
way, and so on.

Referring to Eq.(4) and Eq.(9), it is easy to verify,

Jk(hk) = E[e2
k−1(n)] −

∫ π

−π

| Hk(λ) |2 Sxkxk
(λ)dλ

︸ ︷︷ ︸
a2

= Jk−1(hk−1) − a2 ≤ Jk−1(hk−1)
(24)

Where a2 < E[e2
k−1(n)]. Therefore,

JM (hM ) < JM−1(hM−1) < · · · < J1(h1) (25)

the theorem is proved.
With above theorem, we can derive the following prop-

erty of the cascade LMS predictor.

Lemma 1 If each stage of the cascade LMS predictor con-
verges to its steady-state value, the cascaded FIR filters pos-
sess the following property:

χ(RM ) < χ(RM−1) < · · · < χ(R1) (26)

where

χ(Rk) =
λkmax

λkmin

(27)
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Proof : The condition given in lemma 1 means that the op-
timum cascaded FIR filters satisfy theorem 1. The output
of the first stage e1(n) can be used only (N − l1)-by-1 tap-
input vector x(n) to characterize. In other word, after first
stage adaptation and convergence, the input signal dynamic
range to the second stage is reduced. The ratio between the
peak and average of the spectral density of the input signal
is decreased. Thus

χ(R2) < χ(R1) (28)

For the output of the second stage e2(n), in the same reason,
it can be estimated using only (N − l1 − l2)-by-1 tap-input
vector x(n). Therefore, the eigenvalue spread of the input
to the third stage satisfies

χ(R3) < χ(R2) (29)

and so on until the last stage, the input can be estimated
using lk-by-1 tap-input vector and satisfies

χ(RM ) < χ(RM−1) (30)

The lemma is proved.

5. SIMULATION RESULTS

In above demonstration of the theorem and lemma, we as-
sume that each stage of the cascade LMS predictor con-
verges to its steady-state value. However, LMS convergence
speed suffers from both the length of the filter and the eigen-
value spread of the input covariance matrix. In practice, the
first stage can use a low-order filter as a pre-whitening adap-
tive filter to reduce the eigenvalue spread. The second stage
adopts a long LMS predictor, which works well for gen-
eral signals and it is different from the cascade short-size
filters [4]. We carried out the simulations for synthetic and
real signals to evaluation the behavior of the cascade LMS
predictor. Here we show the results of three stages cascade
LMS predictor for an audio linear prediction to support our
theoretical analysis. From Fig.1 (a) (b) and (c), we observe
that the cascade LMS predictor removes the dominant com-
ponent of input in recursive way.

We applied the cascade structure to audio clips sampling
at different rates for 51 audio clips provided by MPEG-
4 with different lossless audio codecs’ predictor (Monkey
3.97, cascade LMS and TUB LPC predictor). The average
results of SNR for different predictor are shown in the Ta-
ble 1. It shows that the proposed predictor in such cascade
structure gives best predictive gain among them.

6. CONCLUSION

In this paper, we gave a formal proof that the cascade LMS
predictor performs a linear prediction in terms of successive
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Fig. 2. Frequency Response of three stages cascade LMS
predictor: (a) First stage x1(n) and e1(n); (b) Second stage
x2(n) and e2(n); (c) Third stage x3(n) and e3(n)

Table 1. The results of SNR for different lossless codecs’
predictor for mono signals

Track Monkey 3.97 cascade LMS TUB (LPC)
48kHz/16bit 28.8(dB) 29.5(dB) 28.1 (dB)
48kHz/24bit 28.9(dB) 30.0(dB) 28.6(dB)
96kHz/24bit 51.5(dB) 53.9(dB) 53.5(dB)
192kHz/24bit 63.4(dB) 65.4(dB) 65.3(dB)

refinement. The simulation results for synthetic and real au-
dio signals confirm our theoretical analysis and the cascade
adaptive linear predictor may lead to better predictive gain
than LPC technique. We shall study the performance of this
structure in near future.
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