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ABSTRACT

In this paper, we present a novel decomposition for sinusoidal
audio coding using amplitude modulation of sinusoids via a lin-
ear combination of arbitrary basis vectors. The proposed method,
which incorporates a perceptual distortion measure, is based on
a relaxation of a non-linear least squares minimization. It offers
benefits in the modeling of transients in audio signals. We com-
pare the decomposition to constant-amplitude sinusoidal coding
using rate-distortion curves and listening tests. Both indicate that,
at the same bit-rate, perceptually significant improvements can be
achieved using the proposed decomposition.

1. INTRODUCTION

The problem of decomposing a signal into amplitude modulated si-
nusoids is encountered in many different applications, for example
in parametric audio coding (see, e.g., [1]) where modulated sinu-
soidal models are of interest for handling transients. Even when
dynamic time segmentation [2, 3] is employed, there is a need for
efficient modeling of transients. In [4], it was shown that perceptu-
ally significant improvements can be achieved by applying ampli-
tude modulation (AM) in a frequency dependent way as opposed
to single-banded AM (see, e.g., [5]). Furthermore, it was shown in
[6] that frequency dependent AM achieves lower distortions com-
pared to constant-amplitude (CA) sinusoidal coding at the same
rate. Sinusoidal modeling using both amplitude and frequency
modulation, in the form of a linear combination of basis vectors
such as low-order polynomials, has been explored for a variety of
applications (see, e.g., [7, 8]). Although such models perform well
for slowly evolving signals like voiced speech, they do not handle
the transients often encountered in audio signals well.

In this paper, we extend the work in [4, 6] by introducing a
signal decomposition based on a set of preselected, linearly in-
dependent, real-valued basis vectors that describe the amplitude
modulating signal. Furthermore, we examine how to incorporate
such a decomposition in parametric audio coding, especially not-
ing that it is not always efficient in terms of rate and distortion to
use the AM technique. The rest of the paper is organized as fol-
lows: In Section 2, both the signal decomposition and the solution
to the associated minimization problem are presented, followed in
Section 3 with the incorporation of a perceptual distoriton mea-
sure. Section 4 describes sinusoidal audio coding using the pro-
posed AM decomposition. Experimental results are presented in
Section 5, and Section 6 concludes on our work.

∗The work of M. G. Christensen was conducted within the ARDOR
(Adaptive Rate-Distortion Optimized sound codeR) project, EU grant no.
IST–2001–34095.

2. PROPOSED DECOMPOSITION

In the proposed decomposition, the signal of interest is modeled as
a sum of amplitude modulated sinusoids, i.e.,

x(n) =

LX
l=1

γl(n) cos(ωln + φl), (1)

where ωl and φl denote the lth carrier frequency and phase, re-
spectively, and γl(n) is the amplitude modulating signal formed
as the linear combination

γl(n) =

IX
i=1

b(n, i)ci,l, (2)

where b(n, i) and ci,l denote the ith basis function evaluated at
time instance n and the (i, l)th AM coefficient, respectively. We
will here assume that the L carrier frequencies are distinct, so that
ωk �= ωl for k �= l. The additional flexibility in (1), as com-
pared to the traditional constant-amplitude models with γl(n) =
Al, gives improved modeling of transient segments. We note that
the constant-amplitude model is a special case of the modulated
model, with the amplitude modulating signal being DC. Let xa(n)
denote the discrete-time “analytical” signal constructed from x(n)
by removing the negative frequency components, such that the re-
sulting signal may be down-sampled by a factor two without loss
of information [9] provided that there is little or no signal of in-
terest near 0 and π. The signal model xa(n) can then be written
as

xa(n) =

LX
l=1

IX
i=1

b(n, i)ci,le
jωln+jφl (3)

Choosing N to be even, and introducing

xa =
ˆ

xa(1) xa(3) · · · xa(N − 1)
˜T

, (4)

where (·)T is the transpose operator, the down-sampled discrete-
time “analytical” signal may be put into matrix-vector notation

xa = [(BC) � Z]a, (5)

where � denotes the Schur-Hadamard product, i.e., [E � F]kl =
[E]kl[F]kl, with [E]kl being the (k, l)th element of E. Further,
Z ∈ C

N/2×L with L < N/2 is constructed from the L complex

carriers, i.e., [Z]kl = ejωl(2k−1), a =
ˆ

ejφ1 · · · ejφL
˜T

.
The amplitude modulating signal is written using the known AM
basis vectors, [B]kl = b(2k − 1, l), and the corresponding coef-
ficients, [C]kl = ck,l. Here, B ∈ R

N/2×I with I < N/2 and
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C ∈ R
I×L. The problem of interest is given a measured signal,

y(n), find x(n) such that

min
C,{φk},{ωk}

NX
n=1

|y(n) − x(n)|2 (6)

or, equivalently,

min
C,{φk},{ωk}

‖ya − xa‖2
2 (7)

where ya is formed similar to xa, and ‖ · ‖2 denotes the 2-norm.
This problem is nonlinear in the frequencies {ωk}L

k=1, and is thus
called a nonlinear least squares (NLS) minimization. Typically,
this type of problem requires a multidimensional minimization
which is computationally infeasible in most situations. For the
sinusoidal estimation problem, several suboptimal approaches ba-
sed on relaxation of the original problem have been suggested to
reduce the computational complexity of the minimization, such as
the greedy matching pursuit [10] or recursive methods such as RE-
LAX [11]. Herein, we propose an iterative method for the mini-
mization of (7), reminiscent to both the above mentioned methods.
The suggested method exploits the fact that for given {ωk}L

k=1,
the minimization problem with respect to C for fixed {φk}L

k=1 is
quadratic, and conversely the minimization of {φk}L

k=1 for fixed
C. We propose to iteratively find C and {φk}L

k=1, minimizing the
residual for each frequency in a given finite set of frequencies, Ω.
Let

ck =
ˆ

c1,k · · · cI,k

˜T
. (8)

At iteration k, assuming the k − 1 carriers and corresponding co-
efficients known (i.e., found in prior iterations), we find for each
frequency ω ∈ Ω, the model parameters φk and ck , minimizing
the residual for that particular frequency. The kth carrier is then
found as the parameter set minimizing the residual over Ω, i.e.,

ω̂k = arg min
ω∈Ω

‖rk − DkejφkBck‖2
2, (9)

where Dk is the diagonal matrix constructed from the kth carrier,
with zk = ejωk , i.e.,

Dk = diag
`ˆ

z1
k z3

k · · · zN−1
k

˜´
. (10)

Further,

rk =
ˆ

rk(1) rk(3) · · · rk(N − 1)
˜T

(11)

contains the kth residual, obtained as

rk(n) = ya(n) −
kX

l=1

IX
i=1

b(n, i)ĉi,le
jω̂ln+jφ̂l . (12)

For each frequency ω, we iteratively solve for φk and ck (with
superscript (p) denoting the pth iteration of the alternating mini-
mization); for given ĉ

(p−1)
k ,

φ̂
(p)
k = ∠

8>>><
>>>:

NX
n = 1,
n odd

IX
i=1

b(n, i)ĉ
(p−1)
i,l e−jωnrk(n)

9>>>=
>>>;

. (13)

Given φ̂
(p)
k , the minimization wrt. the AM coefficients reduces to

ĉ
(p)
k = B†u

(p)
k , (14)

with

B† =
“
BT B

”−1

BT , (15)

which can be pre-computed. The vector u
(p)
k is defined as

u
(p)
k =

h
u

(p)
k (1) u

(p)
k (3) · · · u

(p)
k (N − 1)

iT

, (16)

which is the real part (recall that ci,l ∈ R) of the residual shifted
towards DC by the carrier, i.e.,

u
(p)
k (n) = Re

j
rk(n)e−jωn−jφ̂

(p)
k

ff
. (17)

The parameters in (13) and (14) are then found alternately, given
the other, until some stopping criterion is reached. For a given
ω the problem is convex, and the algorithm converges to a global
maximum. Hence, the 2-norm of the residual is a non-increasing,
convex function of the number of iterations. We note that for the
special case of constant amplitude (DC basis), the estimates (9),
(13) and (14) reduce to those of a matching pursuit [10] with com-
plex sinusoids.

3. INCORPORATING PERCEPTUAL DISTORTION

It is well-known that the 2-norm error measure does not corre-
late well with human sound perception. The problem of finding
a suitable distortion measure is one of computational complexity
and mathematical convenience and tractability. On one hand, we
would like to have a measure that takes as much as possible of
the processing in the human auditory system into account, while
on the other hand, we would like to have a measure that defines
a mathematical norm and leads to efficient, simple estimators and
quantizers. Here we apply the perceptual distortion measure pre-
sented in [12]. For a particular segment, the distortion D can be
written as

D =

Z π

−π

A(ω)|F [w(n)e(n)] |2dω, (18)

where F [·] denotes the Fourier transform, A(ω) ∈ {x ∈ R|x >
0} is a perceptual weighting function, w(n) is the analysis win-
dow, and e(n) = y(n) − x(n) is the modeling error. When
the weighting function is chosen as the reciprocal of the mask-
ing threshold, the resulting error spectrum will be shaped like the
masking threshold. While this measure is a spectral one, it is
still inherently based on waveform matching since it operates on
the Fourier transform of the time domain error, meaning that pre-
echos, for example, will not go unpunished by the measure. With
respect to audibility, the actual distortion values for non-stationary
segments should be interpreted with care. In practice the spec-
tral weighting function A(ω) is a discrete function, as is the error
spectrum, and the distortion (18) is calculated as a summation of
point-wise multiplications in the frequency domain. This corre-
sponds to a circular filtering in the time domain. Putting this into
matrix-vector notation, we get [13]

D = ‖HW(y − x)‖2
2, (19)

where H is an circular matrix constructed from the impulse re-
sponse of the filter corresponding to

p
A(ω) and W is a diagonal

weighting matrix containing the elements of the analysis window
w(n). Depending on the filter length, it may still be advantageous
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to implement the filtering operation in the frequency domain. For
further details on this procedure, we refer to, e.g., [13]. Using the
perceptual distortion allows us to minimize a perceptually more
meaningful measure than the 2-norm. However, doing so makes
the pseudo-inverse B†, defined in (15), frequency and segment de-
pendent, forcing it to be re-calculated for each frequency and seg-
ment. Experimentally, we have found that the use of the perceptual
distortion measure is much more important when minimizing wrt.
the frequency in (9) than when solving for the AM coefficients in
(14) and the phase in (13). Minimizing the perceptual distortion
measure in (9) leads to the selection of the perceptually most im-
portant sinusoids. Thus, in order to minimize the complexity, we
only apply the perceptual distortion measure in (9).

4. AUDIO CODING USING THE DECOMPOSITION

Many audio segments are well-modeled using a CA sinusoidal
model, and applying the proposed AM decomposition is not al-
ways preferable from a rate-distortion point of view. Rather, to
enable efficient coding of both stationary and transient segments,
we propose the use of combined coder, containing both a CA sinu-
soidal coder and a coder based on the AM decomposition. Herein,
the AM decomposition has been incorporated into the experimen-
tal coder described in [6]. Based on rate-distortion optimization,
it is determined in each segment whether an AM or CA sinusoidal
model should be used. We refer to such a combined coder as the
AM/CA coder, using the term CA coder for the pure CA-based
coder. Let Ts be a finite, discrete set of coding templates for seg-
ment s and R(τ ) and D(τ ) be the rate and distortion associated
with coding template τ . Then, the problem of rate-distortion opti-
mization under rate constraint (i.e., finding the optimum distribu-
tion of R� bits over S segments) can be written as the following
unconstrained problem (see [14, 2] for further details)

SX
s=1

min
τ∈Ts

[D(τ ) + λR(τ )] , (20)

with λ ≥ 0. This follows from the assumption that the (non-
negative) distortions and rates are independent and additive over
the segments s. This means that the cost function can be mini-
mized independently for each segment, for a given λ. Here we
use the coding templates Ts = {ψ1, . . . , ψLψ , χ1, . . . , χLχ} with
ψk being k constant-amplitude sinusoids and χk being k ampli-
tude modulated sinusoids for segment s. When the optimal λ that
leads to the target bit-rate R�, denoted λ�, has been found, the
rate-distortion optimization simply becomes a matter of choosing
the optimum coding template as

τ�
s = arg min

τ∈Ts

[D(τ ) + λ�R(τ )] . (21)

The optimal λ is found by maximizing the concave Lagrange dual
function:

λ� = arg max
λ

 
SX

s=1

»
min
τ∈Ts

D(τ ) + λR(τ )

–
− λR�

!
. (22)

Typically, this is done by sweeping over λ (using some fast method
exploiting the convexity of R(D)) until the rate R(λ) is within
some range of the target bit-rate [2]. We then chose between AM
and CA using the following criterion

min
k

[D(χk) + λ�R(χk)] < min
k

[D(ψk) + λ�R(ψk)] . (23)
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Fig. 1. AM bases used in the experiments.

Thus, AM coding template χk is chosen when it is the rate-distortion
optimal choice among Ts for a particular segment.

5. EXPERIMENTAL RESULTS

5.1. Configuration

In the experiments to follow, von Hann windows of length 30 ms
were used in both analysis and overlap-add synthesis with 50%
overlap. Sinusoidal parameters are quantized as follows: Phases
are quantized uniformly using 5 bits/component, whereas ampli-
tudes and frequencies are quantized in the logarithmic domain.
Since entropy coding of the quantization indices is commonly used
in audio coding, we estimate the resulting rates as the entropies of
the quantization indices, which gives approximately 9 bits/com-
ponent for frequencies and 6 bits/component for amplitudes. The
AM coefficients are also quantized using the amplitude quantizer.
This leads to an average of 30 bits/component for amplitude modu-
lated sinusoids and 20 bits/component for constant-amplitude. The
quantizers were found to produce perceptually transparent results
compared to unquantized parameters. In the rate-distortion opti-
mization, distortions are calculated using unquantized values as
the measure (18) may be overly sensitive to frequency quantiza-
tion. Note that the rates can be reduced significantly by differential
encoding [15].

5.2. Informal Evaluation

Informal listening tests indicate that the combined AM/CA coder
results in high perceived quality of coded excerpts for both station-
ary and transient parts. Generally, the type of signals that benefit
from AM are signals that exhibit sharp onsets and stops, percus-
sive sounds and changing signal types, such as transitions from
unvoiced to voiced in speech signals. Often, the improvements
are perceived as an increase in bandwidth. In Figure 2, the rate-
distortion curves (or more correctly the distortion-rate curves) of
the CA coder and the AM/CA coder are shown. These were found
by sweeping over λ in (20) and finding the associated optimal rate
and distortion point. It can be seen that there is a significant im-
provement in the rate-distortion tradeoff resulting from the pro-
posed decomposition. It can also be seen that the curve saturates
at higher rates, meaning that lower distortions can be achieved.
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Fig. 2. The rate-distortion curves of the CA coder (solid) and that
of AM/CA coder (dashed) for for the excerpt Glockenspiel.

Results of Listening Tests

Preference [%]
Excerpt AM/CA CA Significant

Castanets 100 0 Yes
Claves 80 20 Yes

Glockenspiel 63 37 Yes
Harpsichord 63 37 Yes
Vibraphone 57 43 No
Xylophone 78 22 Yes

Total 74 26 Yes

Table 1. Results of AB-preference test.

5.3. Listening Test

A blind AB preference test with reference was carried out on head-
phones using 6 different transient excerpts from SQAM1 with 7
inexperienced listeners participating. The listeners were asked to
choose between the CA coder and the AM/CA coder, both op-
erating at a bit-rate of approximately 30 kbps. Each experiment
was repeated 8 times in a randomized, balanced way. The results
are shown in Table 1. Significance was determined using a bino-
mial distribution and a one-sided test with a level of significance
of 0.05. The test shows that performance can be improved signifi-
cantly using the proposed decomposition.

6. CONCLUSION

In this paper, we have proposed a linear decomposition technique
for amplitude modulated sinusoidal signals, showing that such a
method might be used for high quality audio coding. Experiments
indicate that a significantly higher rate of convergence, in terms of
rate-distortion, can be achieved for transient segments when incor-
porating the proposed method in a combined coder. This is also
confirmed by listening tests, showing that for a given bit-rate, sig-

1The coded excerpts are currently available on the Internet at
http://kom.aau.dk/˜mgc/projects/ldam/.

nificant improvements can be gained for the coder using the pro-
posed decomposition. These results are promising for applications
of amplitude modulation in low bit-rate audio coding.
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