
PARAMETER ANALYSIS FOR GLZ AUDIO COMPRESSION

Zeph Landau† and Darko Kirovski‡

† Department of Mathematics, The City College of New York, NY, USA
‡ Microsoft Research, One Microsoft Way, Redmond, WA, USA

ABSTRACT

The generalized Lempel-Ziv (GLZ) paradigm for lossy com-
pression for audio relies upon the fact that music, in partic-
ular electronically generated sound, has substantial level of
repetitiveness within a single clip. Thus, GLZ compresses
each of the overlapped and transformed windows of audio
using a linear combination of filtered past windows. Fol-
lowing the introduction of the basic GLZ algorithm, in this
paper, we empirically analyze several key algorithm com-
ponents. We analyze the design of simple band-pass filters
used during the similarity search, we investigate the distri-
butions of weights used to create the linear combinations,
and finally, we explore how beat detection can be used to
significantly speed up the similarity search process. We
present preliminary experimental results on a benchmark of
electronically generated musical pieces.

1. THE BASIC GLZ PARADIGM

Repetition is often a principal part of composing music and
is a natural consequence of the fact that distinct instruments,
voices and tones are used to create a soundtrack. The GLZ
compression paradigm is based upon a generalization of
predictive coding [3] and the Lempel-Ziv compression algo-
rithm [4]; it explores music self-similarity to enable a mem-
ory based compression model. In this section, we overview
the GLZ paradigm [1]. We consider a normalized input sig-
nal x of N samples, where each sample xi ⊂ x is nor-
malized xi ∈ [−1, 1]. The signal is partitioned into 50%
overlapping blocks of n samples where n is a power of two,
commonly within n ∈ [512, 4096]. The proposed compres-
sor windows each signal block using a perfect reconstruc-
tion analysis window and individually compresses it. Dur-
ing decompression, a synthesis window reverses the effect
of the analysis window [2].

For a given signal block xi = {xi, . . . , xi+n−1}, we
establish a search window si = {xstart(i), . . . , xi−1} which
either represents the full signal history (i.e., start(i) = 1) or
has a certain predetermined length S (i.e., i−start(i) = S).
We search for a subset of blocks W = {wj ⊂ si, j =
1 . . . K} and a set of corresponding scalars A = {αj ∈
A ⊂ R, j = 1 . . . K} and transforms F = {fj(Rn) →
R

n, fj ⊂ F, j = 1 . . . K}, where F is the set of all con-

sidered transforms. Sets F , A, and W satisfy the following
optimization goal:

arg min
W,A,F

H

⎧⎨
⎩m

⎡
⎣xi,

K∑
j=1

αjfj(wj),bi

⎤
⎦

⎫⎬
⎭ . (1)

The set of transforms F consists of a time-to-frequency
transform such as the MLT [2] with different band-pass fil-
ters. For example, an exemplary transform fj(wj) would
apply the MLT to the block wj and zero out the resulting
frequency coefficients below 100Hz.

The representation error ε = xi −
∑K

j=1 αjfj(wj) =
xi − ri is masked using a psycho-acoustic filter m() as fol-
lows. We first compute the psycho-acoustic mask bi of the
source block xi. The mask bi ∈ {0, 1}n distinguishes audi-
ble from inaudible frequency coefficients and can be com-
puted using well known psycho-acoustic models [5]. We
define the masking function m(x, r, b) on a single signal
coefficient x and its reconstruction r and masking bit b:

m(x, r, b) ≡
⎧⎨
⎩

x − r,
0,

r − T · sign(r),

b = 1
b = 0 ∧ |r| ≤ T
b = 0 ∧ |r| > T

(2)

where T denotes the hearing threshold for sample x. When
applied to vectors, the function m(x, r,b) independently
performs the steps from Eqn. 2 to each vector element. The
goal of the masking function m() is to set the error such
that reconstruction of audible samples is exact whereas the
reconstruction of inaudible samples is such that the absolute
magnitude of the error is minimized.

Finally, function H() computes the entropy of the fol-
lowing information: [H1.] quantized pointers to all blocks
in W , [H2.] quantized pointers to the applied transforms F ,
[H3.] quantized scalars in A used to create the linear com-
bination of transformed blocks, and [H4.] the error vector
returned by function m().

The encoded information (H1–H4) represents the final
compressed stream. Clearly, the optimization goal of the
similarity search formalized using Eqn. 1, is to find a set
W of K blocks which occur prior to xi and a linear com-
bination of their transforms ri, which represents xi as close
as possible in the sense of minimizing the entropy of the
remaining error vector m(xi, ri,bi).

III - 1570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

The decompression process is marginally slower than in
the case of a traditional codec. For each reconstructed block
xi, we first decode the information from the compressed
stream; we extract the set of pointers to prior blocks W , the
scalar amplifiers A, the filters F applied onto each block
pointed by W to compute the basis vectors, and the error
vector εi = m(xi, ri,bi). In the last step, we compute
the reconstruction as xi =

∑K
j=1 αjfj(wj) + εi. Since

the basis can be constructed from the source in the time-
or frequency-domain, during decompression the reconstruc-
tion window which equals the search window is maintained
in the appropriate domain.

1.1. Compression Parameters

Choosing the parameters to improve the compression algo-
rithm is a delicate task. Specifically, choices that would re-
duce the entropy contribution of (H4), such as increasing
the sizes of A, F, K, or decreasing the blocksize n, have
the effect of increasing the entropy contribution of (H1-H3).
Conversely, decreasing the size of A, F, K, or increasing the
blocksize n reduces the entropy contribution of (H1-H3) but
has the effect of giving a worse approximation of the signal
which increases the entropy contribution of (H4). Indepen-
dent of these considerations are the very important choices
of the elements of F and A.

We limit K ≤ 3. We fixed blocksize n = 1024 though
in the general model, n could be variable. We set A =
{−1,−.1, .1, .2, .5, .8, .9, 1, 1.1, 1.2} and impose F = {f1..f5}
as follows: f1, f2, f3 – low-(0,64), mid-(65,167), and high-
(168-512)-pass filters (respectively) of the MLT coefficients,
f4 – a low-stop filter that removes the lowest eighth of all n
MLT coefficients, and f5 - an all-pass filter. In our experi-
ments, we used a linear quantizer and an entropy coder with
a unified view on all quantized MLT coefficients to digi-
tize the compression error εi. Just as in classic compression
schemes, using a particular quantizer-encoder system may
alter system performance significantly.

1.2. Similarity Search

Searching for similarity based on the L2 (Euclidean) metric
is fast. Based upon this effect, the following heuristic can
be proposed [1]. We begin by choosing a small set G =
{gl : 1 ≤ l ≤ L} of linear operators gl : R

n → R
n, for

which we heuristically feel that L2 similarity for gl(x) and
gl(w) leads to small values for H{m(x, αf(w),bi)} for at
least one choice of α ∈ A, f ∈ F. Then our search proce-
dure, iteratively performs the following steps. We begin by
forming a pool P of candidate blocks by, for each l, choos-
ing the blocks si,j within the search window si of length
n for which gi(si,j) is maximally correlated in L2 norm to
gl(xi). The top P correlated blocks from si for each l are
denoted as the most similar ones to xi and put into the pool
P. Next, each block si,j from P is evaluated as a solution by

searching for the minimal H{m(xi, αf(si,j),bi)} over the
entire search spaces α ∈ A and f ∈ F.

The result of this best-effort search is adopted as the first
basis vector w1 in the set W and its accompanying param-
eters f1() and α1. Next, the most similar point w1 is sub-
tracted from xi as xi−α1f1(w1). The two steps, search for
the best approximation of the signal remainder and its sub-
traction, are iterated while the improvement in the entropy
of the remaining signal is greater than the number of bits
required to encode αK , fK(), and the pointer to wK .

1.3. Similarity Search Parameters

For the experimental results presented here G = {gl : 1 ≤
l ≤ 7} with: g1, g2, g3 – low-, mid-, and high-pass filtering
of the bands in the MLT domain responsible for about one
third of the entropy of music, e.g., for a block of n = 512
MLT coefficients the pass frequencies were set at coeffi-
cients 64 and 167, g4 – a low-stop filter that removes the
lowest eighth of all n MLT coefficients, g5 – a weighting
filter that weights each coefficient with the ratio of the en-
tropy of this coefficient over the clip to the average absolute
value of this coefficient, g6 a filter in the time domain corre-
sponding to the window function of the MLT, and g7 which
did not filter at all.

1 5 6 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

clip number

P
er

ce
nt

ag
e

re
du

ct
io

n
in

en
tr

op
y

m
ea

su
re

m
en

t H
4

1 5 6 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

clip number

P
er

ce
nt

ag
e

re
du

ct
io

n
in

ov
er

al
l e

nt
ro

py

K=1
K=2
K=3
Variable K

K=1
K=2
K=3

Reduction in entropy measurement

Overall Reduction in Entropy

Fig. 1. Entropy reduction performance.

2. EMPIRICAL PARAMETER ANALYSIS

In the experiments presented, we considered ten audio clips,
mostly electronically generated. Then benchmark is de-
scribed in detail in [1]. For each clip, we randomly selected
100 blocks and ran our compression scheme with the pa-
rameters K, n, A, F, G as described in the previous section.
For each gl in the similarity search, we used the top 200
correlated blocks (P = 200) to use in P.

The resulting compression in entropy is shown in Fig-
ure 1 for clips 1,5,6,8,9,10. The remaining clips 2,3,4,7
showed little compression gain. The top graph shows the
reduction in the entropy of the error signal – the (H4) con-
tribution to the total entropy measurement – after one, two

III - 158

➡ ➡

and three rounds. The lower graph factors in the cost of
(H1-H3), which is approximately 26.5 bits per round per
block (about 21 bits for the pointer to the similar block,
and 5.5 bits for the specification of α and fi). One can
consider a variable scheme for choosing K as follows: for
each block, factor in the bit cost for each additional round,
i.e., if the resulting compression in entropy does not exceed
(26.5) then stop. The first three bars for each clip on the
bottom graph correspond to the total entropy compression
for one, two and three rounds; the final bar corresponds to
the total entropy using the variable scheme for choosing K.
This scheme produces a total entropy reduction of 8.9%,
5.4%, 24.1%, 8.1%, 18.7% and 21.5% respectively for the
clips 1,5,6,8,9,10. Note that the improvement slows rapidly,
round by round, and thus it appears that increasing the size
of K should not produce much improvement.

−1 −0.1 0.1 0.5 0.8 0.9 1 1.1 1.2
0

10

20

30

P
er

ce
nt

ag
e

of
 B

lo
ck

s

−1 −0.1 0.1 0.5 0.8 0.9 1 1.1 1.2
0

10

20

30

−1 −0.1 0.1 0.5 0.8 0.9 1 1.1 1.2
0

10

20

30

Distribution of alpha for K=1,2,3

K=1

K=2

K=3

Value of alpha

Fig. 2. Distribution of α. The above three histograms repre-
sent the distribution per round of the scaling parameter over
the chosen set A = {−1,−.1, .1, .2, .5, .8, .9, 1, 1.1, 1.2}.
The distribution of α. Figure 2 shows the histogram of
the choice of α used round by round. These results bare
out the intuition that the average value of α should decrease
round by round. The fact that 28% of the first round choices
of α were equal to 1/2 suggests that the set A should have
included more numbers near 1/2. Based on these observa-
tions, a clear improvement would be to have round depen-
dent sets Ai, i = 1, 2, 3, with A1 concentrated mostly in the
range α ∈ [.4, 1], A2 concentrated mostly in a lower range
including some small negative values and A3 concentrated
in a still lower range.

Alternatively we suggest two heuristics to find the best
α parameter associated to a given block xi and f1: [(i)]
α1 = xi · f1(si,j)/(||xi|| · ||f1(si,j)||), which aims at mini-
mizing the Euclidean distance between xi and its basis vec-
tor f1(si,j), and [(ii)] two-step search for the best α. In the
first step, we search within a particular set of common val-
ues for α. We denote this intermediate search result as α∗.
In the second step, we fine-tune α∗ by searching in its near-

est locality, e.g., we exhaustively search for the next best
decimal to obtain the final α.
The choice of F. Figure 3 describes the performance of the
filters f ∈ F. The left of the pair of bars gives the percent-
age of time that the use of filter fi produces a reduction in
entropy within .5% of the best result found. We see that for
each round, f5, the identity filter produces a result within
.5% of the best result the most often. This points to the in-
clusion of f5 in a future choice of F. The difference in the
graphs round by round suggests that a round dependent set
Fi, i = 1, 2, 3 might improve results. The right hand bar
of each pair represents the percentage of time that the filter
produces a reduction in entropy within .5% of the best and
that the best filter, f5, does not give a result within .5% of
the best result. This right hand bar gives some indication
of other important filters that might be chosen to comple-
ment f5. As we see, in the second two rounds, the medium
pass filter stands out, which suggests that the choice of f2 or
some other medium pass filter would be a good complement
to include with f5 in a round dependent F2 or F3.
The choice of search filters G. Figure 4 describes the per-
formance of the search filters g ∈ G for each round. The left
bar of the pair indexed by i gives the percentage of time that
a similar block generated from gi had an entropy compres-
sion within .5% of the best compression that was found. We
see that with this set up, filter g5, the filter with each MLT
coefficient weighted by the ratio of the entropy of that co-
efficient for the clip to the average absolute value of that
coefficient, outperformed the other filters, finding a candi-
date within .5% of the best candidate about half the time.
For the second two rounds, the mid-pass filter g2 outper-
formed the other filters, finding the best candidate 40% and
43% percent of the time respectively. The right bar of the
pair considers the effect of the remaining filters on those
blocks where the top performing filter, g5 for K = 1, g2

for K = 2, 3, did not produce a candidate block with com-
pression within .5% of the best compression that was found.
For instance in the case of K = 1, the left hand bars indi-
cate that g6 and g7 might be considered for removal since
they do not perform well as often as g5 and tend to mostly
perform well on blocks that g5 also has performed well on.

The fact that there are better filters than g6 and g7 on
all rounds emphasizes that there is a significant difference
between small entropy and small Euclidean distance. These
results point towards making the set G round dependent,
as well as suggesting that careful choices of its elements
may produce significant improvements. The choice of g5 is
the only choice that tries to take into account the difference
between similarity in the L2 sense and the entropy sense.

2.1. Using the Beat Information

One of the most robust events in music is its beat. In this
section, we observe that similarity in music occurs corre-

III - 159

➡ ➡

1 2 3 4 5
0

20

40

60

1 2 3 4 5
0

20

40

60

1 2 3 4 5
0

20

40

60

within .5% of best
within .5% of best and filter 5 not within .5% of best

within .5% of best
within .5% of best and filter 5 not within .5% of best

within .5% of best
within .5% of best and filter 5 not within .5% of best
within .5% of best
within .5% of best and filter 5 not within .5% of best

Performance of different signal transformations
P

er
ce

nt
ag

e
of

 b
lo

ck
s

Index of transformation f

Fig. 3. Performance of fi.

1 2 3 4 5 6 7
0

20

40

60

1 2 3 4 5 6 7
0

20

40

60

1 2 3 4 5 6 7
0

20

40

60

P
er

ce
nt

ag
e

of
 b

lo
ck

s

within .5% of best
within .5% of best and f ilter 2 not within .5% of best

within .5% of best
within .5% of best and f ilter 5 not within .5% of best

within .5% of best
within .5% of best and f ilter 2 not within .5% of best

within .5% of best
within .5% of best and f ilter 5 not within .5% of best

Performance of different search filters

Index of search filter g

K=1

K=2

K=3

Fig. 4. Performance of gi.

lated with its rhythmic behavior. In order to analyze this
phenomenon, we sequenced music clips into beats using a
fast, off-the-shelf beat detection system based on the EM
algorithm [6]. We denote the beat information as a pseudo-
periodic sequence T = {t0 = 1∪tj , j = 1 . . . |T |−1}. Any
two consecutive pointers in T are such that |tj−tj−1−τ | ≤
ε, j > 1, where τ is the beat period and ε is its maximum
deviation.

We derive the main empirical observation using the fol-
lowing experiment. After computing T for each clip in
our audio benchmark, we computed the similarities for 100
1024-long MLT blocks randomly sampled from the first 45
seconds of the clip. For each sampled block xi and each
considered filter fj() ∈ F, we identified a block candidate
pool: 10 blocks that correlated the best with xi in the fj()-
domain. The goal was to compute the relative position off-
set ρ(xi,xm) for a block xm in the candidate pool with re-
spect to xi and within their respective containing beats. For
each block xi and its candidate block xm starting at the i-th
and m-th sample of x respectively, we denote the borders of

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

1400

Sample offset

N
um

be
r

of
 s

el
ec

te
d

bl
oc

ks

First round K = 1
Second round K = 2
Third round K = 3

Fig. 5. Distribution of similar blocks with respect to music’s
beat.

their containing beats as ti, ti+1 and tm, tm+1 respectively.
We set a = (i− ti)− (m− tm), b = (i− ti+1)− (m− tm),
and c = (i − ti) − (m − tm+1). Now, we define:

ρ(xi,xm) ≡
⎧⎨
⎩

a,
b,
c,

|a| = min(|a|, |b|, |c|)
|b| = min(|a|, |b|, |c|)
|c| = min(|a|, |b|, |c|)

(3)

In all cases, large number of selected blocks were found
in a relatively narrow co-located region within respective
beats. Within a region of size equal to 1/8th of the beat
length, typically more than half the selected blocks are found.
This points to to improvements that can be enabled using
beat detection. First, the similarity search can be signifi-
cantly sped up (factor 2-5x) by restricting the search space
to the narrow regions co-located with the target block. Sec-
ond, such a restriction reduces the pointer-set W entropy,
about 2.5-3 bits lower than equiprobable pointer encoding.

3. REFERENCES

[1] D. Kirovski and Z. Landau. Generalized Lempel-Ziv Compression
of Audio. IEEE International Workshop on Multimedia and Signal
Processing, to appear, 2004.

[2] H. Malvar. A modulated complex lapped transform and its applica-
tion to audio processing. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1999.

[3] B. Derjavitch, E.M. Deloraine, and S. Van Mierlo. French Patent
No. 932140, August 1946; also filed as U.S. Patent No. 2629859,
October 1947.

[4] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, Vol.23,
no.3, pp.337–343, 1977.

[5] K. Brandenburg. Perceptual coding of high quality digital audio.
Applications of Digital Signal Processing to Audio and Acoustics,
Kluwer, 1998.

[6] D. Kirovski and H. Attias. Audio Watermark Robustness to Desyn-

chronization via Beat Detection. Info Hiding Workshop, 2002.

III - 160

➡ ➠

