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ABSTRACT

The loudspeaker is a nonlinear transducer that produces harmonic

distortion and nonlinear controllers, requiring parameters well

tuned to the loudspeaker, are used to reduce it. Unfortunately loud-
speaker parameters are not well known and vary during normal op-

eration. Based on a simplified nonlinear model of the loudspeaker,

and a modification to the adaptive filters, nonlinear systems for the

estimation of parameter for the mechanical part and for the elec-
trical part of the loudspeaker where developed. The parameters

estimated are directly usable by the controllers, not requiring ad-

ditional conversion calculations. The Kalman and RLS adaptive

algorithms where applied to this systems and simulation results
show that they converge, although the electrical part estimation

system was about 15 times slower than the mechanical.

1. INTRODUCTION

Loudspeakers (LS) are electroacoustic transducers used in repro-

duction of sound and, unfortunately, they are highly nonlinear [1,

2, 3]. Non-linearities are responsible for the production of har-

monic distortion, among other problems. Although these prob-
lems do occur in all the perceptible spectrum, in this paper we

shall only address the lower part of it, where the LS has to move

larger volumes of air causing greater distortion. A common ap-

proach to extend the output of the LS to the low frequencies is to
increase the volume of the enclosure [4]. However, practical con-

siderations and usability impose restrictions on its size. Also, a

smaller size also means a smaller volume of air that has to be com-

pressed within the enclosure and, because of the highly non-linear
relationship between the volume of air and the force it applies to

the LS diaphragm [3], results in more output distortion. To further

reduce this distortion, nonlinear controllers are used [1, 3, 5], al-

though, they require a large set of parameters well tuned to the con-
trolled LS. Unfortunately, due to manufacturing tolerances, ther-

mal variations during operation, aging and other causes, LS pa-

rameter values are not well known, especially the nonlinear ones,

that are usually not specified by the manufacturer. Thus, an accu-

rate determination of the parameters of the LS (even during normal
operation) is mandatory to the good performance of the controller.

Systems able to estimate such parameters, preferably during the

normal operation of the LS, therefore not requiring special test sig-

nals or adding mass to the cone (for example) are highly desirable.
The approach followed here is to use adaptive algorithms, namely

the Kalman and the Recursive Least Squares (RLS) algorithms [6],

applied to the nonlinear models of the LS, in order to estimate an

adequate controller oriented parameters. The models are presented

in a way that favors the direct estimation of parameters required by
the controllers, avoiding extra conversion calculations.

In this work, we will start in section 2 with the presentation

of the nonlinear model of the LS, as well as the controllers used

to reduce its nonlinear behavior in section 3. Section 4 is devoted
to the estimation of the parameters, whereas section 5 deals with

the adaptive algorithms used. In section 6 we present simulation

results and conclusions are reserved for section 7.

2. THE LOUDSPEAKER MODEL

The large signal behavior of an electrodynamic loudspeaker can
be modeled by a pair of simplified nonlinear differential equations

[1, 3]:

u = Rei +
d (L(x)i)

dt
+ Bl(x)v (1)

Bl(x)i = ma + Rv + k(x)x −
1

2

dL(x)

dx
i
2

(2)

The equation 1 describes the electrical part of the loudspeaker,

where u is the voltage supplied to the loudspeaker, i is the cur-
rent and v is the loudspeaker diaphragm velocity. The main elec-

trical elements are the voice-coil electrical resistance Re and the

voice-coil nonlinear self inductance L(x). For the mechanical

part, equation 2 has x as the diaphragm displacement and a as its
acceleration. Actually, this equation represents a damped mass-

spring mechanical system with a moving mass m, a mechani-

cal damping R and a nonlinear stiffness k(x). There is also an

added reluctance force − 1
2

dL(x)
dx

i2 caused by the nonlinear self-

inductance. Both parts are interconnected by the LS motor causing

interdependence between the two equations and the ratio between
the force produced by the motor and the current is the nonlinear

force-factor Bl(x). All the nonlinearities present in the model are

displacement-dependent and can be approximated by n-th order

polynomials:

Bl(x) = bl0 + bl1x + bl2x
2 + · · · + blnx

n
(3)

L(x) = l0 + l1x + l2x
2 + · · · + lnx

n
(4)

k(x) = k0 + k1x + k2x
2 + · · · + knx

n
(5)

So, the model of the LS includes a set of linear parameters, (Re,

m and R) plus the several polynomial terms bln, ln and kn.

3. LOUDSPEAKER CONTROLLERS PARAMETERS

Although theory shows [3] that current drive (using high output

impedance amplifiers) is more suitable for the control of the LS
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than voltage drive (using low output impedance amplifiers), com-

mercially the latter is still preferred. So, two types of controllers

will be considered.

3.1. Current drive controller

A current drive controller can be written as [3]

i = G
′

Q(x)i′ +

»
R(x) −

ω′

p

Q′

p

Q(x)

–
v +

+
h
S(x) − ω

′

p

2
Q(x)

i
x + T (x)i∗2 (6)

where i′ is the controller input, i is the current to feed the loud-

speaker and i∗ is the previous value of the loudspeaker current.

The resonance frequency ω′

p, the quality factor Q′

p and the gain G′

define the linear frequency response of the controlled loudspeaker.

The nonlinear functions Q(x), R(x), S(x) and T (x) are approxi-

mated by polynomials:

Q(x) = m

Bl(x)
= q0 + q1x + q2x

2 + · · · (7)

R(x) = R

Bl(x)
= r0 + r1x + r2x

2 + · · · (8)

S(x) = k(x)
Bl(x)

= s0 + s1x + s2x
2 + · · · (9)

T (x) = − 1
2Bl(x)

dL(x)
dx

= t0 + t1x + t2x
2 + · · · (10)

Equations 7 to 10 contain all the unknown loudspeaker parameters

needed to be determined for this controller.

3.2. Voltage drive controller

A voltage drive controller can be written as [3]

u = ReG
′

Q(x)u′ +

+

»
ReR(x) + Bl(x) − Re

ω′

p

Q′

p

Q(x)

–
v +

+
h
ReS(x) − Reω

′

p

2
Q(x)

i
x + T (x)i2 +

+
d (L(x)i)

dt
−

R2
e

ω′

L

G
′

Q(x)
di′

dt
(11)

where the controller input is now u′. For specifying the controlled

frequency response, an additional parameter (ω′

L) has to be defined
because a voltage driven loudspeaker has a larger order (third) than

current driven. The signal i′, for this controller, is a virtual current

corresponding to the current the loudspeaker wold have if it was

linear and had a frequency response defined by G′, ω′

p, Q′

p e ω′

L.

i
′ =

1

G′
a +

ω′

p

G′Q′

p

v +
ω′2

p

G′
x (12)

The unknown parameters of the LS required for this controller are
the same (Q(x), R(x), S(x) and T (x) coefficients) as before in

addition to Re and the coefficients of Bl(x) and L(x).

4. PARAMETER ESTIMATION

The next phase is the determination of estimation systems that can

obtain values for the parameters defined above. Figure 1 represents

a topology, known as parallel plant modeling, where the plant (the

loudspeaker) is placed in parallel with a model. The output of the

Input Model

Algorithm
e(n)

d(n)

d̂(n|u)

Fig. 1. Diagram of the adaptive system.

plant d(n) is the desired response, the output of the model is an

estimate d̂(n|u) of the desired response an the difference between
them

e(n) = d(n) − d̂(n|un) (13)

is the estimation error. When the estimate is close to the desired

response then the estimation error is small and the model is said

to be adapted to the plant. The adaptive algorithm tries to find a

parameter vector w that minimizes a cost function J(w), namely
the Wiener filters [6] use the mean-squared error

J(w) = [e(n)e∗(n)] . (14)

But before going more into to the algorithms themselves, let us

define the models to be used to measure de loudspeaker parameters
required by the controllers.

Starting by the current drive controller, we can see the resem-

blance between the functions Q(x), R(x), S(x) and T (x) (equa-

tions 7 to 10) of the controller and the terms appearing in equa-
tion 2. In fact, if we solve equation 2 in respect to i, we get the

following equation

i = Q(x)a + R(x)v + S(x)x + T (x)i2 (15)

which can be used as the model, using the current i as an esti-

mate of the loudspeaker response (d̂(n|u) = i), of course being
compared with the current of the real loudspeaker. Note that the

current drive control does not require any other parameters other

than those given by the model of equation 15, meaning that cur-

rent drive control only requires the estimation of the mechanical
part parameters, and none from the electrical part.

The equation 15, however, poses a problem because it is non-

linear, and the model part of an adaptive filter usually [6] is a finite

impulse response (FIR) filter, which is described by the expres-

sion d̂(n) = wu, where d̂(n) is the filter desired output, u is a

tap-delay vector of the input

u = [u(n), u(n − 1), u(n − 2), · · · ]T (16)

and w is a vector containing the weights for each filter tap. This

kind of filter is linear and is expected to be adapted to the response
of a linear system.

However, if we take equation 15 and expand all it’s polynomi-

als we get

i
′ = q0

d2x

dt2
+ q1x

d2x

dt2
+ q2x

2 d2x

dt2
+ · · · + r0

dx

dt
+

+r1x
dx

dt
+ r2x

2 dx

dt
+ · · · + s0x + s1x

2 +

+s2x
3 + · · · + t0i

2 + t1xi
2 + t2x

2
i
2 + · · · , (17)
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Fig. 2. The estimation system for the mechanical part
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Fig. 3. The estimation system for the electrical part

which can be written as i′ = wu if we make

w = [q0, q1, q2, . . . , r0, r1, r2, . . . , s0, s1, s2, . . . , t0, t1, t2, . . .]
(18)

as the parameter vector to be determined and

u =

»
d2x

dt2
, x

d2x

dt2
, x

2 d2x

dt2
, · · · ,

dx

dt
, x

dx

dt
, x

2 dx

dt
, · · ·

· · · , x, x
2
, x

3
, · · · , i

2
, xi

2
, x

2
i
2
, · · ·

˜T
(19)

as an input vector containing nonlinear state signals from the loud-

speaker. So, we manage to get a formalization of the model similar
to the one used for a FIR filter but, instead of a tap-delay vector,

we now have a nonlinear state input vector u. Then we can apply

the same algorithms used in adaptive filters, namely the Kalman

and RLS algorithms.

For the voltage drive controller, the extra required parameters
are already in equation 1 that can be directly used as a model for

the adaptive algorithms. In this case, by means of expanding poly-

nomials as was done for current drive, we get

w = [Re, l0, l1, l2, . . . , bl0, bl1, bl2, . . .] (20)

for the parameter vector and

u =

»
i,

d

dt
i,

d

dt
(xi) ,

d

dt

`
x

2
i
´
, · · · ,

dx

dt
, x

dx

dt
, x

2 dx

dt
, · · ·

–T

(21)
for the input vector. This controller requires estimation of both

mechanical and electrical part parameters, so it requires the use of

the two estimation systems simultaneously.

Note that not all the adaptive filter theory results [6] remain

valid after such changes as we have done, namely the convergence

conditions of the algorithms no longer apply.

5. ADAPTIVE ALGORITHMS

It was already mentioned that the Wiener filters use the mean-

squared error as a cost function. To update the parameters vector

w, the steepest-descent algorithm uses the recursive relation

w(n + 1) = w(n) +
1

2
µ [−∇(n)] (22)

where ∇(n) = dJ(n)
dw(n)

is the gradient of the cost function J(w) in

relation to the parameter vector w. But the problem with this al-
gorithm is the requirement of knowing the input vector correlation

matrix and the cross correlation vector between the input vector u

and the desired response d(n), both unfortunately unknown. So,

different algorithms, sub-optimal, are used instead, from which we
are going to use the Kalman algorithm and the RLS algorithm.

The reader who needs a more in-depth discussion about adap-

tive algorithms, can find it in [6]. We are going to limit ourselves

to a very superficial description, just enough to alow an implemen-
tation of the algorithms.

5.1. Kalman Algorithm

The Kalman algorithm makes a number of computations, in each

iteration, described by the following set of expressions:

g(n) = K(n, n − 1)u(n) [Jmin+

+u
T (n)K(n, n − 1)u(n)

i
−1

(23)

e(n) = d(n) − u
T (n)ŵ(n − 1) (24)

ŵ(n) = ŵ(n − 1) + g(n)e(n) (25)

K(n) = K(n, n − 1) −

−g(n)uT (n)K(n, n − 1) (26)

K(n + 1, n) = K(n) + qI (27)

The value of the constant Jmin should be about 0.001 to 0.01

times the desired response d(n) variance. The initial conditions
are w(0) = 0 and K(0) = cI, where c is a positive constant and

I is the identity matrix.

5.2. RLS Algorithm

The RLS algorithm also uses a series of computations for each it-

eration, but now using the expressions

k(n) =
λ−1P(n − 1)u(n)

1 + λ−1uT (n)P(n − 1)u(n)
(28)

e(n) = d(n) − ŵ
T (n − 1)u(n) (29)

ŵ(n) = ŵ(n − 1) + k(n)e(n) (30)

P(n) = λ
−1

P(n − 1) − λ
−1

k(n)uT (n)P(n − 1) ,(31)

being initialized with P(0) = δ−1I and w(0) = 0, where δ is a
small positive constant of no important influence if the number of

iterations is large.

6. SIMULATIONS

The two loudspeaker parameter estimation systems, as shown in

figures 2 and 3, where simulated in the SIMULINK R©1 environ-

ment, using a loudspeaker simulation model, with the parameters

1The MathWorks, Inc.
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order
Parameter 0 1 2 3 4

Bl (Tm) 9, 06 566 −1, 52e5 −1, 90e6 2, 72e9
k (Nm−1) 2, 64e3 1, 39e5 6, 94e7 0 0
L (H) 1, 62e−3 0.111 −17.82 −444 8, 88e4
R (Nm−2) 0, 8
m (Kg) 0, 036
Re (Ω) 5, 4

Table 1. Loudspeaker parameters used in simulations

0 0.5 1 1.5 2
10

−10

10
−5

10
0

10
5

Time (s)

|e
(
n
)
|

(a) Kalman, mechanical

0 0.5 1 1.5 2
10

−10

10
−5

10
0

10
5

Time (s)

|e
(
n
)
|

(b) RLS, mechanical

0 5 10 15
10

−10

10
−5

10
0

10
5

Time (s)

|e
(
n
)
|

(c) Kalman, electrical

0 5 10 15
10

−10

10
−5

10
0

10
5

Time (s)

|e
(
n
)
|

(d) RLS, electrical

Fig. 4. Time evolution of the modulus of the estimation error for

the Kalman and the RLS mechanical and electrical loudspeaker
parameter estimation systems.

presented in table 1, as the loudspeaker whose parameters are to

be determined. Both algorithms in both mechanical and electrical

part estimation systems where able to converge, being evolution of
the absolute value of the estimation error presented in figure 4. As

seen above, the estimation error is the difference between the loud-

speaker (or desired) response and the model (included in the esti-

mation system) response (or estimated response), so the smaller its

absolute value the better the estimation is, ideally should be zero.

For the mechanical part, the Kalman algorithm reaches the
minimum error level at 10−5 in about 0.8 seconds while the RLS
algorithm reaches a 10−4 error level in 0.2 seconds. Thus, the

RLS algorithm is faster at the expense of an higher error level.

The same kind of behavior can be seen for the electrical part but
at a slower rate, taking both algorithms about 15 times longer to

reach the minimum estimation error levels. The Kalman algorithm

reaches 10−5 in 12 seconds and the RLS algorithm reaches 10−3

in 3 seconds.

7. CONCLUSION

Loudspeakers (LS) have non-ideal frequency response and, be-

cause they are highly nonlinear transducers, produce harmonic dis-

tortion. In order to increase their output at low frequencies, large
enclosures have to be used causing practical and usability prob-

lems. Also, limitations on enclosure size means a smaller volume

of air inside the enclosure causing, due to the highly nonlinear be-

havior of air compression, additional distortion. To further reduce
the distortion, nonlinear controllers are used requiring a large set of

parameters well tuned to the controlled LS. Due to several causes,

these parameters are not know and do not remain constant, thus

their accurate determination (even in normal operation), without
the use of special signal or special LS conditioning, is mandatory

to the good performance of the controller.

In this work, a simplified model of the loudspeaker was pre-

sented, as well as nonlinear controllers used to reduce its nonlin-
ear behavior. The model was presented in such a way that the

determined parameter could be directly used by the controllers,

avoiding extra conversion calculations, and was concluded that the

current drive controller only requires the estimation of the param-

eters of the mechanical part while the voltage drive requires both,
the mechanical and the electrical. So, based on the model and in

some modifications done to the classical adaptive filter in order to

apply it to nonlinear systems, two systems able to estimate these

parameters from the LS where developed, one for the mechanical
part and the other for the electrical. These systems can use clas-

sical adaptive algorithms, in particular, the Kalman and the RLS
presented in this work.

Due to the modifications done, not all the results from the
adaptive filter theory remain valid, namely the convergence con-

ditions, but simulations performed in SIMULINK R© environment

showed that the two algorithms converge in the two systems, al-

though the electrical parameter estimation system was about 15
times slower than the mechanical. The comparison of the two

adaptive algorithms revealed a tradeoff between the lower estima-

tion error attained by the Kalman algorithm and the faster conver-

gence of the RLS algorithm for both systems.
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