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ABSTRACT

A well-performing double-talk detection (DTD) algorithm
is a vital part of an acoustic echo canceller. However, re-
cent algorithms are typically evaluated using a static time-
invariant room acoustic impulse response, omitting a proper
treatment of the case when the acoustic echo path is chang-
ing. In this work, we introduce a common framework to ob-
jectively evaluate how path changes affect the DTD perfor-
mance. Via extensive numerical simulations, we conclude
that the main factor in acoustic path changes affecting the
DTD performance for some of the more common DTD al-
gorithms is variations in the damping of the echo path.

1. INTRODUCTION

The problem of acoustic echo cancellation (AEC) was in-
troduced in [1] and has since been a very active area of re-
search. Briefly stated, an acoustic echo canceller is needed
for removing the acoustic echoes resulting from the acoustic
coupling between the loudspeaker(s) and the microphone(s)
in communication systems. The near-end acoustic signal,
v(t), is measured in the possible presence of an echo signal
resulting from the far-end signal, z(t), emitted in the near-
end room by the loudspeaker. When both such an echo and
the near-end signal are present, the so-called double-talk
(DT) case, the resulting microphone signal, y(t), consists of
the near-end signal mixed with the far-end signal filtered by
a (typically time-varying) room acoustic filter (which is the
impulse response from the loudspeaker to the microphone),
h;. Often, h; is modeled as an n-tap finite impulse response
(FIR) filter, hy = [hy(0) Ay (1) hi(n—1)]", yield-
ing the microphone signal

y(t) = hix(t) +v(t) +w(t), €]

where w(t) is additive noise, and

x(t) = [¢(t) a(t—1) 2t—-n+1)]". @
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To enable the reduction of the undesired echo signal, an
adaptive filter, flt, defined similarly to h;, is used to pre-
dict the echo term, h7'x(t), and subtract this value from
the microphone signal, yielding the residual signal e(t) =
y(t) — hTx(t). For simplicity, we will here assume that
both h; and h; are of length n. When no DT is occurring,
the adaptive filter can track the time variations of the room
acoustic filter; however, during DT, it is vital to prevent the
adaptation of the filter. The residual signal, e(t), will in
this case contain the near-end signal which will severely
disturb the adaptation, possibly causing the adaptive filter
to diverge. As a consequence, the recent literature is abun-
dant with different double-talk detection (DTD) algorithms
of varying efficiency [2-8]. The majority of these algo-
rithms are implicitly based on the assumption that the room
acoustic filter does not vary over time, with only a minority
including simulation studies for the case when the acous-
tic path is changing [5, 6]. Note that it is very important to
differentiate between DT and changes in the acoustic echo
path; in the former, adaptation of the adaptive filter should
be prevented, while in the latter, the adaptation speed should
be increased. It is not clear from most of the above cited ref-
erences how much changes in the acoustic paths affect the
performance of the different DTD algorithms. Furthermore,
none of the mentioned papers include information on how
such time-variations have been simulated (which turns out
to be very important). To the best of our knowledge, no
detailed study has been made on the performance degrada-
tion for different DTD algorithms when the acoustic path
is changing, nor has it been investigated what kind of path
changes that would significantly affect the DTD algorithms’
performance. The purpose of this paper is therefore to for-
malize an objective approach to examine the performance
degradation of DTD algorithms under echo path changes,
as well as evaluating which form of changes that affect the
performance of the algorithms the most. We note that it
is in general difficult to evaluate how DTD algorithms are
affected by changes in the acoustic paths; to make the prob-
lem feasible, one has to limit the evaluation to specific algo-
rithms, as well as make a series of simplifying assumptions.
Here, we will limit our attention to comprise four of the
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more well-known algorithms, namely the Geigel algorithm
[8], the normalized cross correlation (NCR) algorithm [2],
the cross correlation (CR) algorithm [6], the short-term nor-
malized correlation-based DTD algorithm (STNC) [4], as
well as the recent VIRE algorithm presented in [5] (a brief
summary of these methods can also be found in [5]).

2. EVALUATION OF ECHO PATH CHANGES

Changes in the acoustic echo path can occur due to a vari-
ety of reasons; the loudspeakers and microphones may be
replaced, moved or obscured, and the configuration of the
room may vary, e.g., by the motion of people and objects
within the near-end room. The nature of these changes dif-
fer; some are sudden and occur instantly, others are slowly
varying over a period of time. Furthermore, an echo path
change may well result in variations of the acoustic damp-
ing (e.g., by objects moving into the direct path between
the loudspeaker and the microphone), defined as the norm
of the impulse response. Here, we consider a combination
of acoustic path changes: (i) changes that occur instantly,
(i1) changes that takes place continuously over a relatively
short period of time, (iii) changes where the damping in
the acoustic path is larger before the change than after the
change, and (iv) changes where the damping in the acous-
tic path is larger after the change than before the change. To
enable an objective performance evaluation of the examined
DTD algorithms, we propose an evaluation scheme remi-
niscent of the DTD scheme in [3]. The proposed scheme
evaluate the effects on the algorithms’ probability of false
detection, P, for a given probability of missed detection,
P,,, in the presence of an acoustic echo path change. Here,
Pm = NDm/ND and Pf = NDf/NNDv where NDm is
the number of samples where DT was not detected but was
present, Np is the total number of samples where DT was
present, Npy is the number of samples where DT was de-
tected but where no DT was present, and Nyp is the to-
tal number of samples where DT was not present. Using
P,, = 0.1, the evaluation scheme is: (i) Generate seven
seconds of data according to (1), with DT present from 5.5
to 6.5 seconds. (ii) Apply the detector to the last 5 sec-
onds of data to allow the adaptive filter time to converge,
and choose a detection threshold for each evaluated DTD
algorithm such that P,,, = 0.1. (iii) Create 5 new data sets,
with each having different acoustic paths and where there is
a change of the acoustic path at time 3.5 seconds. In each
data set, the same DT that was present in step (ii) should be
present from 5.5 to 6.5 seconds. (iv) Apply the detector to
all the 5 data sets and compute the average Py. Each im-
pulse response used before the change in a certain data set
should also be used after the change in another data set to
ensure that the observed effects of the echo path changes are
not caused by the particular impulse responses used. The

suggested framework does not consider cases when echo
path changes occur when the adaptive filter is still adapt-
ing. This is a case most DTD algorithms will have prob-
lems with, especially those that rely on a converged estimate
of the echo path such as Cheap-NCR. Furthermore, we do
not consider changes occurring over a very long time pe-
riod. This case is usually not a problem since with properly
set thresholds the DTD algorithms will generally not detect
these kind of changes as doubletalk. Finally, we are not con-
sidering cases when echo path changes occur when there is
doubletalk, since there is nothing sensible for the AEC or
the DTD algorithms to do in such cases, as it is not possible
to use the adaptive filter estimate to cancel the echo (as the
filter estimate is incorrect), and the adaptive filter estimate
can not be improved since there is doubletalk disturbing the
adaptation.
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Fig. 1. P; as a function of the NFR for the Geigel (o), VIRE
(4), Cheap-NCR (x), STNC (1) and CR (¢) algorithms for
data set (1).

3. NUMERICAL SIMULATIONS

In order to evaluate the DTD performance degradation in the
presence of acoustic echo path changes, a simulated micro-
phone signal has been constructed according to (1), using
an 11 kHz sampling frequency, and a set of real-world im-
pulse responses of lengths n = 900, obtained using a tele-
conferencing setup and normalized to give a certain damp-
ing. To update the adaptive filter estimate, the NLMS al-
gorithm, with ¢ = 0.7 (in order to give reasonably fast
convergence while still not making NLMS too sensitive to
noise), has been used. Furthermore, both the VIRE and the
Cheap-NCR algorithms use a forgetting factor of A = 0.99
which gives a good probability of detection, providing a sta-
ble performance but still allowing the algorithms to adapt
to changes in the echo paths [5]. The following data sets
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with different echo path changes were created to simulate
the time-varying echo path: (i) the impulse responses are
exactly the same before and after the change, (ii) the damp-
ing of the impulse responses are the same before and after
the change and the change occurs instantaneously, (iii) the
damping of the impulse responses before the change is 10
times smaller than the damping of the impulse responses af-
ter the change and the change occurs instantaneously, (iv)
the damping of the impulse responses before the change is
10 times larger than the damping of the impulse responses
after the change and the change occurs instantaneously, The
evaluation scheme was also applied to the data sets (i)-(iv)
when the echo path change took place continuously during
a time period of 1000 samples. This change was imple-
mented by recomputing the impulse response for each sam-
ple during the change by interpolating between the impulse
responses before and after the change. Surprisingly, the re-
sults from applying the evaluation scheme to the data sets
with continuous echo path changes were almost identical to
those for the data sets where the change took place instan-
taneously. We refer the reader to [5] for a further discussion
on this aspect. The results ! obtained by the DTD evalu-
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Fig. 2. P; as a function of the NFR for the Geigel (o), VIRE
(+), Cheap-NCR (x), STNC () and CR (o) algorithms for
data set (ii).

ation scheme for the first data set are plotted in Fig. 1 in
terms of achieved Py as a function of the Near-end to Far-
end speech Ratio (NFR) for a Signal to Noise Ratios (SNR)
of 30 dB, where NFR = 101log;([Ev?(t)/E[y(t) — v(t)]?]
and SNR = 10log;([E[y(t) — w(t)]?/Ew?(t)]. It is clear
from the figure that for the first data set, when no changes
are occurring, all the DTD algorithms perform well. The re-
sults obtained by the DTD evaluation scheme for the second
data set are shown in Fig. 2. From the figure, we see that the
actual performance degradation is quite small; for most al-

UFurther numerical results can be found in [5].
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Fig. 3. Py as a function of the NFR for the Geigel (o), VIRE
(+), Cheap-NCR (*), STNC (OJ) and CR (¢) algorithms for
data set (iii).

gorithms, the decrease in DTD performance is at most 8 per-
centage units. The performance decrease for the VIRE al-
gorithm is larger, although it is still outperforming the other
algorithms. An interesting feature of the plot is that some
of the algorithms even achieve an increase in DTD perfor-
mance when there is a change in the acoustic path. How-
ever, this is only occurring for very low NFR, when it is
difficult to set a proper threshold yielding P,,, = 0.1. This
occasional increase can also be seen in the remaining fig-
ures. Fig. 3 shows the corresponding figure for the third data
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Fig. 4. P; as a function of the NFR for the Geigel (o), VIRE
(+), Cheap-NCR (x), STNC (0J) and CR (¢) algorithms for
data set (iv).

set. It is clear that the performance of the detectors is signif-
icantly worse when there is a change in the damping of the
impulse response. The difference is especially large for the
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VIRE algorithm when the NFR is low. Only the STNC and
CR algorithms are able to obtain a really low Py for high
NFR. The corresponding results for data set (iv) are shown
in Fig. 4. As seen from the figure, for this data set the perfor-
mance decrease is smaller that for data set (iii). In the data
sets where the dampings of the impulse responses differed,
the relatively large difference of 10 dB was used. In order
to study the effect of the amount of damping on the DTD
performance we have performed simulations using a num-
ber of data sets with instantaneously changing impulse re-
sponses where the amount of damping is varied. The results
when the NFR is 10 dB is shown in Figure 5. It is clear that
the DTD performance variation of most of the algorithms
for different damping ratios is minor, with the Geigel algo-
rithm being the exception. It is also clear that the VIRE and
Cheap-NCR algorithms perform worse when the damping
after the change is larger than before the change.
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Fig. 5. Py as a function of the the ratio between the damp-
ings before and after the change (a negative value in dB
means that the damping for the impulse response after the
change is smaller than for the impulse response before the
change) Geigel (o), VIRE (+), Cheap-NCR (x), STNC (1J)
and CR (¢) algorithms for an NFR of 10 dB.

4. ANALYSIS OF THE SIMULATION RESULTS

From the results presented in the previous section (see also
[5]), one can conclude that: (i) the duration of the change
has almost no impact on the performance of the algorithms
under study, and (ii) there is only a minor performance de-
crease for echo path changes that leave the damping of the
impulse responses unchanged after the change. Further-
more, most of the algorithms under study work poorly for
low NFR; in fact, the performance of several of the algo-
rithms is so poor that it is not possible to reduce their per-
formance further. Typically, it is hard to find the appro-

priate threshold for these methods yielding the desired P,
for low NFRs. A general conclusion of the above simula-
tions is that the DTD algorithms primarily experience per-
formance degradation for echo path changes with variations
in the damping of the acoustic paths. However, it should be
noted that parts of this performance decrease is likely due
to the difficulty in making a fair comparison. There are two
main reasons for this: as the SNR is computed as an average
over the entire data set, it will vary when the damping in the
acoustic paths varies. Furthermore, the threshold value is set
so that P, = 0.1 in the DT region where the data is always
generated using the post-change impulse response. If there
is a change in the path damping, and thus in the SNR and
the NFR, the selected threshold does not necessarily appro-
priate for the pre-change data. To take such effects into ac-
count would require an adaptive threshold value; few DTD
algorithms include such an obviously desirable adaptation.
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