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ABSTRACT

The use of adaptive filters employing tap-selection for stereo-
phonic acoustic echo cancellation is investigated. We propose to
employ subsampling of the tap-input vector, that is intrinsic to par-
tial update schemes, to improve the conditioning of the tap-input
autocorrelation matrix hence improving convergence. We investi-
gate the effect of MMax tap-selection on the convergence rate for
the single channel case by proposing a new measure which is then
used as an optimization parameter in the development of our tap-
selection scheme in the two channel case. The resultant exclusive
maximum tap-selection is then applied to two channel NLMS, AP
and RLS algorithms. Although our main motivation is not the re-
duction of complexity of SAEC, the proposed tap-selection never-
theless brings significant computation savings in additional to an
improved rate of convergence over algorithms using only a non-
linear preprocessor.

1. INTRODUCTION

Stereophonic teleconferencing systems as shown in Fig. 1, are
becoming increasingly popular [1][2]. For such systems, stereo-
phonic acoustic echo cancellers (SAECs) are required to suppress
the echo returned to the transmission room to allow undisturbed
communication between the rooms.

In SAEC, the solutions for the adaptive filters h̃1(n) and
h̃2(n) can be non-unique [2]. Defining L and W as the
lengths of the adaptive filters and transmission room’s impulse re-
sponse respectively and Rxx(n) = x(n)xT (n) where x(n) =
[xT

1 (n) xT
2 (n)]T as in [1], two cases have been described for a

noiseless system:

case 1 : L ≥ W ⇒ Rxx(n) is singular ∀ n

case 2 : L < W ⇒ Rxx(n) is ill − conditioned.

For case 1, it has been shown [2] that there are non-unique solu-
tions which depend on the impulse responses of the transmission
and receiving rooms. In the practical case 2, the problem of non-
uniqueness is ameliorated to some degree by the ‘tail’ effect [2].
However, direct application of standard adaptive filtering is not
normally successful due to the high interchannel coherence be-
tween x1(n) and x2(n) [2] which leads to slow convergence. This
is known as the misalignment problem. Several approaches includ-
ing [2], which uses a non-linear preprocessor (NL), and [3] solve
these problems with the common aim of achieving interchannel
decorrelation without affecting speech quality and stereophonic
perception.

In recent years, selective-tap schemes such as [4][5][6] were
introduced to reduce computational complexity of, in particular,
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Fig. 1. Schematic diagram of stereophonic acoustic echo cancel-
lation (after [2]). Only one channel of the return path is shown for
reason of simplicity.

the normalized least mean squares (NLMS) algorithm by updat-
ing only a subset of taps at each iteration. These techniques allow
implementation of single-channel echo cancellation with perfor-
mance close to that of the full update NLMS algorithm. In this
paper, our main motivation is not to reduce the complexity of
SAEC algorithms. Instead, we propose to employ tap-selection
as a means of improving the conditioning of Rxx(n), hence ad-
dressing problem case 2.

In Section 2, we review the single channel MMax-NLMS al-
gorithm and propose a new measure, M to examine the effect of
tap-selection on convergence rate in the single channel case. For
the stereo case, Section 3 presents the exclusive maximum (XM)
tap-selection technique which jointly maximizes M and mini-
mizes the interchannel coherence. The proposed XM tap-selection
was applied with the NL preprocessor to NLMS in [7]. We now
further extend the XM tap-selection to the affine projection (AP)
and recursive least squares (RLS) algorithms. Additionally, we
formulate an explanation of the improvements obtained in terms
of the conditioning of Rxx due to XM tap-selection. Section 4
presents the resultant XMNL-NLMS, XMNL-AP and XMNL-
RLS algorithms and discusses the computational complexity. Sec-
tion 5 presents comparative simulation results while Section 6 con-
cludes this work.

2. SINGLE CHANNEL MMAX-NLMS

In the MMax-NLMS algorithm [5], for an adaptive filter of
length L, only taps corresponding to the M largest magnitude tap-
inputs are updated at each iteration such that

h̃(n + 1) = h̃(n) + Q(n)
µx(n)e(n)

‖x(n)‖2
(1)
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where Q(n) = diag{q(n)} is the tap-selection matrix with ele-
ments given by

qi(n) =

{
1 |xi(n)| ∈ {M maxima of |x(n)|}
0 otherwise

(2)

for i = 1, 2, . . . , L, and the adaptive step-size is µ. The error
signal is given by e(n) = d(n) − h̃T (n)x(n).

The penalty incurred due to tap-selection in MMax-NLMS is
a degradation in convergence rate for a given step-size µ. We pro-
posed a new measure M(n) as the ratio of the energy of the M
selected tap-inputs to the energy of the full tap-input vector [8],

M(n) =
‖Q(n)x(n)‖2

‖x(n)‖2
. (3)

This measure quantifies the ‘closeness’ of the MMax tap-selection
to the full tap-input vector such that M(n) = 1 corresponds to full
update adaptation. Figure 2(a) shows how M varies with the size
of tap-selection M for zero mean, unit variance white Gaussian
noise (WGN) at a particular time iteration n. We note that M
exhibits only a modest reduction for 0.5L ≤ M < L. Defining
misalignment ζ(n) as

ζ(n) =
‖h − h̃(n)‖2

‖h‖2
, (4)

Fig. 2(b) shows the number of iterations for MMax-NLMS to
achieve -20 dB misalignment for various M. This verifies our
expectation that, over the range 0.5L ≤ M < L, only a grace-
ful reduction in convergence rate is exhibited as compared to full
update adaptation [8]. Since convergence rate can be seen to in-
crease monotonically with M, as shown by a reduction in T20, we
propose that any degradation in convergence due to subselection
of taps can be minimized by selecting taps so as to maximize M.

3. EXCLUSIVE MAXIMUM (XM) TAP-SELECTION

3.1. Formulation

Selective-tap adaptation is now applied to SAEC. We note that di-
rect application of MMax tap-selection will not serve to decorre-
late the two tap-input vectors because, since x1(n) and x2(n) are
themselves highly correlated, nearly identical tap-indices will be
selected in both filters. We therefore formulate the exclusive max-
imum (XM) tap-selection criterion which aims jointly to maximize
M(n) and minimize interchannel coherence at each iteration. In
this two channel case, M(n) is then defined similarly to (3) except
now x(n) = [xT

1 (n) xT
2 (n)]T and Q(n) = diag[q1(n) q2(n)].

The XM tap-selection addresses the minimum coherence condition
by constraining tap-selections to be exclusive such that the same
coefficient index may not be selected in both channels.

Although an exhaustive search of all exclusive tap-selections
could be used to find the selection set which maximizes M [7], a
more efficient method can be found by considering

p(n) = |x1(n)| − |x2(n)|. (5)

The exclusive tap-selection with maximum M(n) can then be
found efficiently by sorting p(n). Consider as a simple ex-
ample an SAEC system with channels k = 1, 2, adaptive fil-
ters each of length L = 4 and tap-input vectors xk(n) =
[xk,1 xk,2 xk,3 xk,4]

T . Also consider the example case p3 > p2 >
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Fig. 2. (a) Variation of M with subselection parameter M , (b) Depen-
dence of convergence rate on M.

p1 > p4, for a particular time instance. Since p3 + p2 > . . . >
p1 + p4, it can be shown using (5) that |x1,3| + |x1,2| + |x2,1| +
|x2,4| > . . . > |x1,1| + |x1,4| + |x2,2| + |x2,3| where . . . refers
to all other pair-wise combinations of pi, i = 1, 2, 3, 4. Thus
the tap-selection corresponding to inputs x1,3, x1,2, x2,1 and x2,4

maximizes M(n) with the minimum coherence constraint satis-
fied by the exclusivity. Consequently, the XM tap-selection matrix
is Q(n) such that at each iteration n, element u of q1(n) and ele-
ment v of q2(n) are defined for u, v = 1, 2 , . . . , L as

q1,u =

{
1 pu ∈ {M maxima of p}
0 otherwise

q2,v =

{
1 pv ∈ {M minima of p}
0 otherwise.

(6)

3.2. Effect of XM tap-selection on the autocorrelation matrix

The exclusive tap-selection can be seen as a method for improving
the conditioning of the input autocorrelation matrix [8]. Defining
E[ ] as the mathematical expectation operator, the two channel
autocorrelation matrix for the stereo case can be expressed as

Rxx(n) = E[x(n)xT (n)]

=

[
R11(n) R12(n)
R21(n) R22(n)

]
. (7)

After exclusive tap-selection, the resulting sparse vectors x̃1(n) =
Q1(n)x1(n) and x̃2(n) = Q2(n)x2(n) give rise to Rx̃x̃(n) =
E[x̃(n)x̃T (n)] in which the diagonals and some off-diagonal ele-
ments of R12(n) and R21(n) are zero. This improves the con-
ditioning of Rxx(n) and in the limit where x̃1(n) and x̃2(n)
are perfectly uncorrelated, the autocorrelation matrix is diagonal,
Rx̃x̃(n) = diag[σ2

1 . . . σ2
1 σ2

2 . . . σ2
2 ] with a condition number of

‖Rx̃x̃‖‖R−1
x̃x̃‖ =

max(σ2
1 ,σ2

2)

min(σ2
1 ,σ2

2)
where σ2

k is the kth channel subse-

lected tap-input variance.
To illustrate the improvement in conditioning of Rxx, impulse

response g1 was first generated using method of images [9] with
g2 = γg1 + (1 − γ)b where 0 ≤ γ ≤ 1 and b is a zero mean
independent WGN sequence. The autocorrelation matrix Rxx was
formed from x1 and x2 generated by convolving a WGN sequence
with g1 and g2 while Rx̃x̃ was formed from x̃1 and x̃2. Figure 3
shows the variation of mean condition number of time-averaged
autocorrelation matrices Rxx and Rx̃x̃ as a function of γ. For
each case of γ, the average condition number for 50 trials is plotted
in Fig. 3(a) and (b) for Rxx and Rx̃x̃ respectively. For small γ,
x1 and x2 are less correlated and the condition number of Rxx

III - 134

➡ ➡



0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

A
ve

ra
ge

 C
on

di
tio

n 
nu

m
be

r

γ

(a)

(b)

Fig. 3. Effect of exclusive tap-selection on mean condition number for
WGN sequence (a) without tap-selection (b) with exclusive tap-selection.

is seen to be correspondingly small. For each case of γ, Rx̃x̃ has
a lower mean condition number than Rxx and hence improved
convergence performance for case 2 is obtained using exclusive
tap-selection.

4. EXCLUSIVE MAXIMUM (XM) ALGORITHMS

The XM selective-tap criterion is now applied to the NLMS,
AP and RLS adaptive algorithms. As has been shown, the XM
selective-tap criterion intrinsically improves the conditioning of
Rxx but relies on the existence of a unique solution achieved us-
ing, for example, the NL preprocessor [2] as described below.

4.1. XMNL-NLMS Algorithm

The non-linear (NL) preprocessor [2] is one of the most effective
methods of achieving signal decorrelation without affecting stereo
perception by using 0 < α ≤ 0.5 as the non-linearity constant
such that

x′
1(n) = x1(n) + 0.5α[x1(n) + |x1(n)|] (8)

x′
2(n) = x2(n) + 0.5α[x2(n) − |x2(n)|]. (9)

Several algorithms in combination with the NL preprocessor have
been proposed [1][10][11] to enhance misalignment performance.
A combined algorithm, XMNL-NLMS, employing the XM tap-
selection to improve the conditioning of the autocorrelation matrix
in combination with the NL preprocessor has been proposed in [7].
The XMNL-NLMS algorithm is given in (1), (6), (8) and (9).

4.2. XMNL-AP Algorithm

The affine projection (AP) algorithm [12] incorporates multiple
projections by concatenating past input vectors from time itera-
tion n to time iteration n − K + 1 where K is defined as the
projection order. We first define x̃′(n) = Q(n)x′(n) where
x′(n) = [x′T

1 (n) x′T
2 (n)]T , the subselected and full tap-input

matrices are then denoted respectively as
X̃′(n) = [x̃′(n) x̃′(n − 1) . . . x̃′(n − K + 1)]T (10)
X′(n) = [x′(n) x′(n − 1) . . . x′(n − K + 1)]T . (11)

The tap-update for the XMNL-AP algorithm is given as

h̃(n + 1) = h̃(n) + µX̃′T (n)[X′(n)X′T (n)]−1e(n) (12)

where e(n) = [e(n) e(n − 1) . . . e(n − K + 1)]T . Thus for
K = 1, XMNL-AP is equivalent to XMNL-NLMS.

4.3. XMNL-RLS Algorithm

The tap-update equation of the RLS algorithm is given as h̃(n) =

h̃(n − 1) + k(n)e(n) where k(n) is the Kalman gain. Direct
extension of the XM tap-selection approach achieved by sorting
the magnitude difference of the k(n) will not achieve the desired
convergence because k(n) depends on previous values of time-
averaged correlation matrix Ψ(n) =

∑n
i=1 λn−ix(i)xT (i) where

0 < λ < 1 is the forgetting factor. Our approach will be to im-
prove the condition of Ψ(n) using x̃′(n) = Q(n)x′(n) which
ensures that the subsampled input vectors propagate consistently
through the memory of the algorithm. Following the approach
in [8], the XMNL-RLS tap-update equation is given by

h̃(n + 1) = h̃(n) + k̃(n)e(n) (13)

where k̃(n) = [k̃T
1 (n) k̃T

2 (n)]T is the modified Kalman gain such
that

k̃(n) =
λ−1Ψ̃′−1(n)x̃′(n)

1 + λ−1x̃′T (n)Ψ̃′−1(n)x̃′(n)
(14)

and using the matrix inversion lemma [12], we have

Ψ̃′−1(n + 1) =
1

λ
[Ψ̃′−1(n) − k̃(n)x̃′T (n)Ψ̃′−1(n)]. (15)

4.4. Computational Complexity

As in MMax-NLMS, the XM tap-selection employs the SORT-
LINE algorithm [13] which requires at most 2 log2 L + 2 compar-
isons. Thus the XMNL-NLMS requires at most 1.5L+2 log2 L+3
operations (multiplications or comparison) for each filter per sam-
ple period with M = 0.5L compared to 2L for NL-NLMS. The
XMNL-AP algorithm requires at most 1.5LK + 7K2 + 2 +
2 log2 L compared to 2LK +7K2 for AP algorithm. The XMNL-
RLS algorithm requires at most 2.5L(L + 1) + 3 + 2 log2 L per
adaptive filter compared to 4L2 +3L+2 multiplications for RLS.
Although complexity reduction is not the main aim of this work,
the XM selective-tap updating nevertheless brings significant com-
putation savings.

5. SIMULATION RESULTS

In these simulations, all room impulse responses were generated
using the method of images [9] with the microphones placed one
meter apart and the source positioned one meter away from each
of the microphones in the transmission room. For generality, all
simulations were performed using different speech signals. Both
the transmission and receiving room’s responses were of length
W = N = 800 and adaptive filters were of length L = 256
and M = 128. Figure 4 compares the convergence of NL-NLMS,
XMNL-NLMS and NL-RLS [2]. Forgetting factor λ = 1 − 1

10L
and step-size µ = 0.7 were used for the NL-RLS and XMNL-
NLMS algorithms respectively. It can be seen that the perfor-
mance of XMNL-NLMS exceeds that of NL-NLMS by around 5
to 10 dB and is close to that of NL-RLS. The XMNL-NLMS algo-
rithm however has lower complexity than the NL-RLS algorithm.

Figure 5 shows the misalignment plot for AP-based algorithms
where the projection order was K = 2 with µ = 0.7. It can be
seen that the rate of convergence of XMNL-NLMS is close to that
of the NL-AP. Additionally, XMNL-AP achieves an improvement
of approximately 6 to 8 dB misalignment compared to that of the
NL-AP for this speech signal.
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Fig. 4. (a) Speech and Misalignment plot for (b) NL-NLMS, (c) XMNL-
NLMS and (d) NL-RLS.
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Fig. 5. (a) Speech and Misalignment plot for (b) NL-NLMS, (c) NL-AP,
(d) XMNL-NLMS and (e) XMNL-AP.

Figure 6 compares the rate of convergence between the
XMNL-RLS algorithm and the NL-RLS algorithm using the same
experimental setup as the previous experiment but using a differ-
ent speech signal. We see that there is a significant improvement
in misalignment of 3 to 9 dB for the XMNL-RLS compared to that
of the NL-RLS.

6. CONCLUSION

We have formulated the XM tap-selection technique and employed
it in the proposed XMNL-NLMS, XMNL-AP and the XMNL-RLS
algorithms. These algorithms achieve the required decorrelation of
the tap-input vectors, hence improving the conditioning of Rxx,
in SAEC using this novel selective-tap scheme and give a sig-
nificant improvement in performance over and above the use of
the NL preprocessor alone. Although direct application of NLMS
is not normally satisfactory for SAEC because of its poor con-
vergence, relatively good performance close to that of RLS-based
schemes can be obtained nevertheless through the use of the pro-
posed XM tap-selection approach. XMNL-NLMS has the benefits
of low complexity and robustness compared to least squares ap-
proaches. Additionally, a significant increase in convergence rate
can be seen for XMNL-AP and XMNL-RLS as compared to that
obtained from NL-AP and NL-RLS respectively.
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Fig. 6. (a) Speech and Misalignment plot for (b) XMNL-NLMS, (c) NL-
RLS and (d) XMNL-RLS.
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