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ABSTRACT
In this paper, we propose an instrumental variable method for

adaptive feedback cancellation (IV-AFC) in hearing aids that is

based on the auto-regressive modelling of the desired signal. The

IV-AFC offers better feedback suppression for spectrally colored

signals than the standard continuous adaptation feedback can-

cellers. In contrast to a previously proposed prediction error

method based feedback canceller, the IV-AFC does not suffer from

stability problems when the adaptive feedback canceller is highly

time-varying.

1. INTRODUCTION
Acoustic feedback limits the maximum gain that can be used in

a hearing aid without making it unstable. A promising solution

for acoustic feedback is the use of an adaptive feedback canceller.

However, because of the presence of a closed signal loop, i.e., the

so-called forward path G(q), the standard continuous adaptation

feedback cancellers (CAF) fail to provide a reliable feedback path

estimate if the desired signal x[k] is spectrally colored [1, 2].

In [2, 3], an adaptive feedback canceller based on the direct

method of closed-loop identification and a fixed estimate of the

desired signal model has been proposed. It has been shown that

an unbiased feedback path estimate can be obtained by means of

a filtered-X algorithm if the desired signal x[k] can be modelled

as H(q)w[k], with w[k] white noise, and the desired signal model

H(q) is known. In practice, H(q) is unknown and highly time-

varying so that it is desirable to also estimate this model adaptively.

In [4], we have derived a prediction error method based adaptive

feedback canceller (PEM-AFC) that identifies both the desired sig-

nal model H(q) and the feedback path F (q). For highly time-

varying signals such as speech, the PEM-AFC has a clear benefit

over the filtered-X algorithm of [2, 3]. In the filtered-X algorithm

of [2, 3] and the PEM-AFC [4], the feedback compensated sig-

nal e[k] is filtered with the estimate of H−1(q) before using it to

update the adaptive feedback canceller F̂ (q). If the estimate of

H−1(q) contains a group delay, the correction term in the adapta-

tion of F̂ (q) is delayed. As a result, instability may occur when

the adaptive filter F̂ (q) is fast time-varying, e.g., in highly time-

varying environments [5, 6].
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In this paper, we propose an instrumental variable (IV) method

for adaptive feedback cancellation (IV-AFC). We show that the IV

method produces an unbiased feedback path estimate if the input-

output data are pre-filtered with H−1(q) and the pre-filtered input

data are used as instrumental variables. As such, the IV-AFC cor-

responds to a modified version of the PEM-AFC: the PEM-AFC

rather uses pre-filtered versions (with H−1(q)) of the input and

the error signal. Simulations demonstrate that the IV-AFC, as the

PEM-AFC, outperforms the standard CAF. Moreover, in contrast

to the PEM-AFC, the IV-AFC does not suffer from stability prob-

lems when the adaptive filter F̂ (q) is highly time-varying, while

the computational complexity is only slightly increased.

Notation
The symbol q−1 denotes the discrete-time delay operator, i.e.,

q−1u[k] = u[k − 1]. A discrete-time filter with coefficient vector

f =
�

f0 f1 · · · fLF −1 � T
and filter length LF is repre-

sented as a polynomial F (q) in q, i.e.,

F (q) = f0 + f1q
−1 + . . . + fLF −1q

−LF +1. (1)

Filtering u[k] with F (q) is denoted as F (q)u[k] or fT u[k]

with u[k] =
�
u[k] u[k − 1] · · · u[k − LF + 1] � T

. The filter

F (q, k) refers to a time-varying filter with coefficient vector f [k].

2. CLOSED-LOOP SYSTEM SET-UP

Figure 1 depicts the closed-loop system set-up of a hearing aid.

The open-loop system to be identified is described by

y[k] = F (q)u[k] + x[k], (2)

where y[k] is the microphone signal and u[k] the loudspeaker sig-

nal. In general, the desired signal x[k] is an audio signal (e.g., a

speech signal). Many audio signals can be closely approximated

by a low-order autoregressive (AR) random process

x[k] = H(q)w[k] =
1

1 + q−1P (q)
w[k], (3)

with w[k] white noise1 and P (q) an FIR filter.

The output signal y[k] is fed-back to the input u[k] according to

u[k] = G(q) � y[k] − F̂0(q)u[k] � . (4)

Using (2) and (4), the input u[k] can be written as

1Note that the white noise assumption is not satisfied for periodic sig-

nals such as voiced speech segments. E.g., the excitation w[k] of a voiced

speech segment is an impulse train [7].
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Fig. 1. Closed-loop system set-up of a hearing aid.

u[k] =
G(q)

1 − G(q) � F (q) − F̂0(q) � x[k] = C(q)x[k], (5)

The filter F̂0(q) in the feedback cancellation path is an initial esti-

mate of the feedback path F (q) chosen such that the closed-loop

system C(q) is stable. During adaptation, it is typically replaced

with the feedback path estimate F̂ (q). In the sequel, we assume

that the forward path G(q) contains a delay df ≥ 1 sample.

3. INSTRUMENTAL VARIABLE BASED AFC

3.1. Instrumental variable method [8, 9]

Let A(q) be a pre-filter and let

xp[k] = A(q)x[k]; up[k] = A(q)u[k]; yp[k] = A(q)y[k]. (6)

The idea behind the Instrumental Variable (IV) method is to use

a generic regression vector ξ[k] ∈ R
L

F̂
×1, called the IV vector,

that is uncorrelated with xp[k] but correlated with the pre-filtered

signal up[k], and to compose the feedback path estimate f̂ [k] as

f̂ = � ΞT [k]Up[k] � −1

ΞT [k]yp[k], (7)

where

Ξ[k]=

�����
�

λ0ξT [k]

λ
1
2 ξT [k − 1]

...

λ
k
2 ξT [0]

� ����
� , Up[k] =

�����
�

λ0uT
p [k]

λ
1
2 uT

p [k − 1]
...

λ
k
2 uT

p [0]

� ����
� , (8)

yp[k] = � λ0yp[k] λ
1
2 yp[k − 1] · · · λ

k
2 yp[0] 	 T

, (9)

up[k] = 
 up[k] up[k − 1] · · · up[k − LF̂ + 1] � T
. (10)

The forgetting factor λ ∈ (0, 1] has been included to allow for

tracking in time-varying scenarios.

In the sequel, we give the IV vector ξ[k] and the pre-filter A(q)

for which an unbiased feedback path estimate f̂ is obtained.

3.2. Unbiased feedback path estimate

Assume that LF̂ = LF and that F (q) is time-invariant. Then, the

feedback path estimate (7) equals

f̂ = f + � ΞT [k]Up[k] � −1

ΞT [k]xp[k]� 
 � �
bias

, (11)

where

xp[k] = � λ0xp[k] λ
1
2 xp[k − 1] · · · λ

k
2 xp[0] 	 T

.

If the IV vector ξ[k] and xp[k] are uncorrelated (i.e.,

ΞT [k]xp[k] = 0) and ΞT [k]Up[k] is non-singular, the bias term

in (11) goes to zero for k → ∞ and λ = 1.
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Fig. 2. Instrumental variable method.

Depending on the choice of the IV vector ξ[k] and the pre-filter

A(q), different IV methods are possible. Here we develop one

based on the idea that if x[k] = H(q)w[k] with w[k] white noise,

the choice

A(q) = H−1(q), ξ[k] = H−1(q)u[k] = up[k] (12)

offers the best accuracy among all choices for the instruments ξ[k]
and the pre-filter A(q), provided that up[k] and xp[k] are uncorre-

lated and ΞT [k]Up[k]=UT
p [k]Up[k] is non-singular [8, 9]. The

feedback path estimate f̂ then becomes

f̂ = � UT
p [k]Up[k] � −1

UT
p [k]yp[k]

= f + � UT
p [k]Up[k] � −1

UT
p [k]xp[k]. (13)

For A(q) = H−1(q), xp[k] equals w[k] and up[k] equals

C(q)w[k] with C(q) defined in (5). Hence, if w[k] is white and

G(q) contains a delay df ≥ 1, the IV vector ξ[k] = up[k] and

xp[k] are uncorrelated, so that the feedback path estimate (13) is

unbiased for k → ∞.

The feedback path estimate (13) minimizes the least-squares

cost function ��� yp[k] − Up[k]f̂
���
2

(14)

Hence, the coefficient vector f̂ [k] can be adapted by applying the

standard adaptive filtering techniques (e.g., RLS or LMS) to the

pre-filtered data yp[k] and up[k], as depicted in Figure 2. For RLS,

this results in the update equation:

f̂ [k]= f̂ [k − 1] +R−1[k]up[k] � yp[k] − f̂T [k − 1]up[k] �
R[k] =λR[k − 1] + up[k]uT

p [k] (15)

The matrix R−1[k] in (15) may be updated using the matrix inver-

sion lemma (cf. Algorithm 2).

3.3. Estimation of the desired signal model

In practice, the desired signal model H(q) is unknown and time-

varying so that H−1(q) has to be estimated adaptively. In general

though, the feedback path F (q) and the desired signal model H(q)
are not both identifiable in the closed-loop system at hand [2]. In

[4], we demonstrated that not only inserting non-linearities or a

probe signal r[k], but also adding a delay in the forward path or

the cancellation path can render the system identifiable. If the total

delay d = df + dc ≥ LH−1 with dc the common delay in the

III - 130

➡ ➡



feedback path F (q) and the cancellation path F̂ (q), the desired

signal H(q) and the feedback path F (q) can be both identified in

closed-loop. Assuming that LA ≥ LH−1 , we set df ≥ LA.

If F (q) was known, we could compute x[k] as

x[k] = y[k] − F (q)u[k]. (16)

Assuming an AR model for x[k] (cf. (3)), an estimate A(q) =
1 + q−1Ā(q) of the inverse desired signal model H−1(q) could

then be computed by solving the linear prediction problem

Ā(q, k)=arg min
Ā(q,k)

k�
k̄=0

λk−k̄
ā � x[k] + Ā(q, k)x[k − 1] � 2

. (17)

where λā is the forgetting factor. Since F (q) is unknown, we use

the feedback compensated signal

ε[k] = y[k] − F̂ (q, k − 1)u[k] (18)

instead of x[k] to compute Ā(q, k) in (17) [8, 10]. To update the

AR coefficients ā[k], we use the Burg lattice algorithm [11], de-

scribed in Algorithm 1.

The pre-filtered data yp[k], up[k] in (15) are then computed as

yp[k] = A(q, k − 1)y[k], up[k] = A(q, k − 1)u[k]. (19)

The complete algorithm, which is a special case of the IV approx-

imate maximum likelihood algorithm of [10], is summarized in

the tabulated Algorithm 2. We refer to this algorithm as IV based

adaptive feedback canceller (IV-AFC). Note that the IV-AFC can

be seen as a modified version of the PEM-AFC where the input-

output data, rather than the input and the error signal are pre-

filtered with H−1(q).

In contrast to the filtered-X algorithm of [2] and the PEM-AFC

[4], any change to the adaptive filter f̂ has an immediate effect on

the adaptation error εp[k] = yp[k]−f̂T [k−1]up[k], irrespective of

the group delay in A(q). As a result, the IV method does not suffer

from instability problems when there is a group delay associated

with A(q) and the adaptive filter f̂ is highly time-varying. Com-

pared to the PEM-AFC, an additional filtering with f̂ is required to

compute the feedback compensated signal ε[k] = y[k]−F̂ (q)u[k].
In hearing aids, the dominant part of the true feedback path F (q)

is short, so that a short filter length LF̂ for f̂ is typically used.

Hence, the increase in computational complexity with respect to

the PEM-AFC is limited.

Note: Like the PEM-AFC, the IV-AFC assumes that the de-

sired signal model H(q) is stationary over a time window with the

length LF of the feedback path f . In hearing aids, the dominant

part of the feedback path F (q) is short, so that this assumption is

justified [4].

4. SIMULATION RESULTS
In this section, we compare the performance of the IV-AFC with

the standard CAF algorithm and the PEM-AFC.

4.1. Set-up and performance measure

In the simulation, we have gradually changed the feedback path

F (q) from an initial F1(q) to a final F2(q) between sample num-

ber 60000 and 68000 (i.e., during 0.5 seconds for a sampling fre-

quency fs = 16 kHz) by means of interpolation. Figure 3 depicts

the frequency responses of F1(q) and F2(q). The filter length LF

of F1(q) and F2(q) equals 50. The gain |G(q)| has been set to

Algorithm 1 Burg lattice algorithm.

Initialization:

f0[k] = ε[k] = y[k] − f̂ [k − 1]u[k];
b0[k] = ε[k];

For i = 1, . . . , LA − 1:

di[k] = λādi[k − 1] + (1 − λā) � f2
i−1[k] + b2

i−1[k − 1] �
ni[k] = λāni[k − 1] + (1 − λā)(−2)fi−1[k]bi−1[k − 1]

κi[k] = ni[k]
di[k]

fi[k] = fi−1[k] + κi[k]bi−1[k − 1] (forward residuals)

bi[k] = κi[k]fi−1[k] + bi−1[k − 1] (backward residuals)

Algorithm 2 IV based adaptive feedback canceller (IV-AFC).

Initialization:
f̂ [0] = 0; R−1[0] = 1

c
IL

F̂
with c a small positive constant

ā[0] = 0 or reflection coefficients κi[0] = 0, i = 1, ..., LA − 1

For each time instant k = 0, . . . , ∞:

u[k] = G(q) � y[k] − F̂0(q, k)u[k] �
Pre-filter the input-output data u[k] and y[k] with A(q, k − 1):

Compute up[k] = A(q, k− 1)u[k] and yp[k] = A(q, k− 1)y[k]:
Filter u[k] and y[k] through the lattice filter κi[k − 1]

Update equation for ā:

Compute ε[k] = y[k] − F̂ (q, k − 1)u[k]
Compute the reflection coefficients κi[k], i = 1, . . . , LA − 1
by applying the Burg lattice algorithm (cf. Algorithm 1) to ε[k]

Update equation for f̂ :

f̂ [k] = f̂ [k − 1] + R−1

f̂
[k]up[k] � yp[k] − f̂T [k − 1]up[k] �� � 	 


εp[k]

R−1

f̂
[k]=

1

λf̂

R−1

f̂
[k−1]− 1

λ2
f̂

R−1

f̂
[k − 1]up[k]uT

p [k]R−1

f̂
[k − 1]

1 + 1
λ
f̂
uT

p [k]R−1

f̂
[k − 1]up[k]

Update the feedback canceller F̂0(q) : F̂0(q, k + 1) = F̂ (q, k)

4. The delay df in G(q) equals 30 samples, i.e., 1.9 msec. For

|G(q)| = 4, the closed-loop system
G(q)

1−G(q)F2(q)
is unstable.

The forgetting factor λ in all algorithms was set to 0.9998. In

the IV-AFC and the PEM-AFC, the filter A(q) was updated by

means of the Burg lattice algorithm with λā = 1 − 1
160

. The filter

length LA = 21, the filter length LF̂ = 50. During adaptation,

the feedback canceller F̂0(q) was continuously updated by F̂ (q).

To assess the performance of the feedback cancellation algo-

rithms we use the misalignment ζ(f [k], f̂ [k]) between the true and

estimated feedback path F̂ (q), defined as

ζ(f [k], f̂ [k]) =

��� f [k] − f̂ [k]
��� 2

2

‖f [k]‖2
2

. (20)

4.2. Simulation results

Figure 4 depicts the misalignment of the CAF, the PEM-AFC and

the IV-AFC as a function of time for a stationary speech-weighted
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Fig. 3. Frequency response of the feedback path F1(q) and F2(q).
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noise signal x[k] created by passing Gaussian white noise through

a 20-th order all-pole filter H(q). For comparison, the IV method

using the true desired signal model H(q), which we consider in

some sense an idealized solution, is also shown. The PEM-AFC

and the IV-AFC clearly outperform the CAF and achieve the same

performance as the idealized IV method with A(q) = H−1(q).

In a second example, x[k] is a real speech signal consisting of

sentences spoken by a male speaker. Figure 5 depicts the misalign-

ment of the CAF, the PEM-AFC, the IV-AFC and the IV method

that uses an AR model of the long-term average spectrum of the

speech signal. Note that the white noise assumption for w[k] is not

completely satisfied anymore: the excitation w[k] of voiced speech

segments corresponds to an impulse train rather than white noise.

As a result, the performance of the PEM-AFC and the IV-AFC is

worse than for the stationary signal [4]. The IV-AFC outperforms

the CAF and the IV method using the long-term average speech

model. The PEM-AFC initially has the same performance as the

IV-AFC. However, when the change in the feedback path F (q) oc-

curs (at sample 60000), the PEM-AFC suffers from instability due

to a delayed adaptation, while the IV-AFC remains stable.

5. CONCLUSIONS

In this paper, we have derived an IV-AFC that is based on the auto-

regressive modelling of the desired signal. The IV-AFC offers bet-

ter feedback suppression than the standard CAF for spectrally col-

ored signals. In contrast to a previously proposed PEM-AFC, the
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Fig. 5. Misalignment ζ(f [k], f̂ [k]) of the CAF, the IV-AFC using

a fixed A(q), the PEM-AFC and the IV-AFC as a function of time.

Real speech signal x[k].

IV-AFC does not suffer from stability problems when the adaptive

feedback canceller is fast time-varying.
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