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ABSTRACT

Most available control algorithms for active noise control (ANC) 

require the identification of the secondary path. This estimation 

will not only increase the control system complexity, but it can 

add to the residual noise power and even cause the adaptive 

system to diverge when the identification is not sufficiently close 

to the real system. In this paper, we use a geometrical analysis of 

the filtered-x LMS algorithm to introduce a new ANC algorithm 

for a single frequency and narrow-band noise where no 

identification of the secondary path is required. Then, we extend 

our new ANC algorithm without the secondary path 

identification to the active control of broadband noise through 

the use of a sub-band ANC implementation. When compared to 

other available control algorithms requiring no secondary path 

identification, our method possesses a simple structure, good 

performance, and a reasonable convergence rate. Simulation 

results confirm the effectiveness of our proposed algorithms. 

1. INTRODUCTION

Active noise control (ANC) and active vibration control (AVC) 

methods have received considerable attention in recent research 

due to many industrial applications. The filtered-x LMS 

algorithm is the most common algorithm that is applied in both 

feed-forward and feed-back systems due to its simplicity [1, 2].  

However, most available adaptive control algorithms, including 

the filtered-x LMS algorithm, require the identification of the 

secondary path. The requirement to identify the secondary path 

causes several problems: 1) increased complexity; 2) potential 

divergence due to identification errors; and 3) increased residual 

noise due to the fact that the online identification requires an 

auxiliary input. 

A control algorithm where no secondary path identification is 

required could potentially solve these problems. Currently, 

several such methods exist [3-7]. However, the methods 

introduced by Feintuch et al [3] and Bjarnason et al [4] do 

require some advance knowledge regarding the secondary path. 

Furthermore, their methods only work for certain narrowband 

noises and systems. The algorithm introduced in [6] uses the 

simultaneous equation method, and so requires implementing an 

auxiliary filter. Although this technique can converge quickly, it 

is not convenient to implement and has considerable 

computation complexity. The method introduced in [7] requires 

three adaptive filters to simultaneously minimize two artificial 

errors – clearly this method is complex and computationally 

burdensome. In [5], random search algorithms based on a simple 

parameter perturbation optimization method are employed to 

find the coefficients of the adaptive control filter. Although 

simple in structure, this method converges very slowly when 

compared to efficient adaptive (gradient based) algorithms like 

the filtered-x LMS. Additionally, the added perturbation will 

increase the residual noise power.

In this paper, we introduce new adaptive control algorithms to 

cancel single frequency noise, narrow-band noise, and 

broadband noise. Our proposed methods do not require any 

secondary path identification. They do enjoy a simple structure, 

yield good performance and converge quickly.  
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Figure 1. Block diagram of the filtered-x LMS algorithm 

2. A GEOMETRICAL ANALYSIS OF FILTERED-X LMS

The filtered-x LMS block diagram is shown in Fig. 1, where 

P(z), S(z) and ˆ( )S z  represent the main path, secondary path and 

the estimated secondary path respectively; W(z) is the adaptive 

filter;  x(n) is the reference signal and v(n) is additive zero-mean 

noise that is uncorrelated with x(n). Now, define the reference 

signal vector ( )X n  as [x(n) x(n-1) … x(n-M)], where M is the 

order of the adaptive filter W(n) so that we have the update 

*( ) ( 1) ( ) ( )W n W n e n X n
f

µ= − +  (1) 

where ( )fX n  is the reference signal vector ( )X n  filtered by 

ˆ( )S z . The positive, real number µ  is the step-size that controls 

the convergence speed and stability. 

If we assume the input is a pure tone with frequency ω , then the 

filters P(z), W(z), ( )S z  and ˆ( )S z reduce to the complex values 

Pω , ( )W nω , Sω  and Ŝω  respectively. We can write (1) as 

* *ˆ( ) ( 1) ( ) [ ( ) ( ) ( 1) ]

*ˆ( 1) ( ) [ / ( 1)]

W n W n x n S x n P x n W n S

W n P S S P S W n
x

µ
ω ω ω ω ω ω ω ω ω

µ ω
ω ω ω ω ω ω

= − + − −

= − + − −
 (2) 

( )P
x

ω  represents the power of the reference signal at the 

frequency ω . When the adaptive filter converges, 

( ) ( 1)W n W nω ω= − ; so we have ( ) /W P Sω ω ω∞ = .
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If the estimated secondary path ˆ( )S z  is error free, i.e.  if 

ˆ( ) ( )S z S z= , then Eq. (2) can be written as 

2' ( ) ( 1) ( ) ( 1)
P

W n W n P S W n
x S

ωµ ωω ω ω ω
ω

⎡ ⎤
⎢ ⎥= − + − −
⎢ ⎥
⎣ ⎦

 (3) 

The physical meaning of (3) is that ' ( )W nω  goes in the point-to-

point direction from ( 1)W nω −  towards /P Sω ω , with a length 

of 2( ) | | / ( 1)P S P S W n
x

µ ω ω ω ω ω− −  as shown in Fig. 2. 

However, in practice, there is always some estimation error. At 

the frequency ω , ˆ( )S z  can be expressed as: 

ˆ
j

S c S e
θω

ω ω ω=  (4) 

where cω  is a real constant representing the amplitude 

estimation error and θω  represents the phase estimation error. 

Combining Eqs. (4) and (2), we have 

2
( ) ( 1) ( ) ( 1)

P j

W n W n P S c W n e
x S

θω ωµ ω
ω ω ω ω ω

ω

−
= − + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

Clearly, ( )W nω  doesn’t go in the point-to-point direction from 

( 1)W nω −  toward /P Sω ω  but rather instead there is the angle 

difference θω  that is indicated in Fig. 2. If  90θω < ° , and 

2( ) | | 2cos( )c P S
x

µ ω θω ω ω< , then the distance from ( )W nω  to 

/P Sω ω  will be less than that from ( 1)W nω −  to /P Sω ω .

Consequently, the adaptive filter will slowly converge. On the 

other hand, if 90θω ≥ ° , the adaptive filter will never converge. 

Using the orthogonality of signals, we can extend this result to 

broadband input signals. In this case, the step size µ  should be 

the smallest over all frequencies, i.e. 

2cos( )
min

2
( )c P S

x

ω

θωµ
ωω ω

<  (6) 

This analysis simply shows the 90± ° stability bound of the 

filtered-x LMS algorithm. The amplitude estimation error of 

ˆ( )S z  should only affect the bound of step size µ  – it will not 

cause divergence if µ  is chosen small enough. These results 

have been observed in [3, 8, 9], but our analysis uses geometry 

to obtain an intuitive explanation that will yield a new 

broadband algorithm. 

3. ANC FOR SINGLE FREQUENCY NOISE WITHOUT REQURING 

IDENTIFICATION OF THE SECONDARY PATH

If we ignore the secondary path effect, then the LMS update is 
*( ) ( 1) ( ) ( )W n W n e n X nµ= − +  (7) 

Using our intuition from Section 2, for a single frequency input  

( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1)

P
W n W n P W n

x S

P j S
W n P S W n e

x S

Sω ω
ωµ ωω ω
ω

ω ωµ ωω ω ω
ω

= − + − −

∠
= − + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

where Sω∠  is the angle of Sω  and Sω  is its amplitude. From 

our previous discussion, we can see that if  

( )2cos

( )

ωµ
ω ω

∠
<

S

P S
x

 (9) 

and Sω∠  is within 90± ° , then the update of ( )W nω  will still 

converge to its ideal value even without identifying the 

secondary path. However, if Sω∠  is more than 90± °  out, then 

( )W nω  will diverge. In this case, if we use 

*( ) ( 1) ( ) ( )W n W n e n X nµ= − −  (10) 

Which is equivalent to changing the sign of µ , then for a single 

frequency input ( )X nω , we have 

( ) ( 1) ( ) ( 1)

( )

( 1) ( ) [ ( 1)]

P j S

W n W n P S W n e
x S

P j S

W n P S W n e
x S

ω

ω ωµ ω
ω ω ω

ω

πω ωµ ω
ω ω ω

ω

∠
= − − − −

∠ −
= − + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (11) 

By changing the sign of µ , we actually move the angle 

difference from out of range to within range as shown in Fig. 3. 

However, without identifying the secondary path, we wouldn’t 

know if Sω∠  is within the 90± °  range or outside of it, so we 

couldn’t determine which direction to move. Our proposed 

solution to this problem is based on the following assumption: 

Assumption 1. The additive noise v(n) in Fig. 1. is wide sense 

stationary or varying slowly with known power range 

Pmax/Pmin=c, where Pmax represents the maximum power of v(n)

and Pmin represents the minimum power v(n).

Using this assumption, we develop our new algorithm for active 

control of a single frequency noise without identifying the 

secondary path (see Alg. 1). In short, this algorithm must be 

initialization, and the iteration must determine the search 

direction, update the filter, and monitor the performance (see 

Fig. 4). The main idea behind our algorithm is of course the 

choice of sign for µ . This is done by monitoring the excess 

noise power. For initialization, N is the length of data used to 

determine the search direction of the adaptive filter. This length 

is related to the frequency of the reference signal and the 

variance of the additive noise v(n). Also   

{ }' max ,1.2c c=  (12) 

where c  is defined in Assumption 1. We use the minimum value 

of 'c  as 1.2 (used step 7 in Alg. 1) to tolerate some variation in 

our adaptive algorithm. Since we don’t have the secondary path 

information, we cannot use Eq. (9) to obtain µ . However, it 

could be estimated using prior information about the secondary 

path or from trial and error. 
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Figure 2. The complex plane expression of Eqs. (3) and (5) 

( 1)W nω −

( )W nω

/P Sω ωi

' ( )W nω
Sω∠

( ) | | [ / ( 1)]xP S P S W nω ω ω ωµ ω − −

( ) | | [ / ( 1)]xP S P S W nω ω ω ωµ ω − −

-

Real 

Figure 3. The expression of Eq. (10) 

Algorithm 1. Single tone noise and certain narrowband noise 

ANC without the secondary path identification. 

Initialization: 

1. Initialize the adaptive filter coefficient W(n) with zeros, 

length of samples N, step size µ and factor 'c .

Direction Search: 

2. Don’t change the adaptive filter coefficients, and 

measure the mean noise power 
1 2

0
1 ( )

N

i
Ee e i

−

=
=∑  and 

reference noise power ( )1 2

0
1

N

i
Ex x i

−

=
=∑  for N samples.  

3. Update the adaptive filter using Eq. (7) and measure the 

mean noise power 2Ee  and mean reference noise power 

2Ex  as in step 1 for another N samples. 

4. If 2 / 2 1/ 1Ee Ex Ee Ex> , change the sign of µ .

Update: 

5. Update the adaptive filter using Eq. (7). 

Performance Monitoring stage:

(For a system with a time-varying secondary path)  

• Initialize (0) 1Ex Ex=  and (0) 1Ee Ee=
6. Calculate the mean noise power ( )Ee n  and mean 

reference signal power ( )Ex n  iteratively: 

21 1
( ) ( 1) ( )

n N
Ee n Ee n e n

n N n N

+ −= − +
+ +

21 1
( ) ( 1) ( )

n N
Ex n Ex n x n

n N n N

+ −= − +
+ +

7. If ( ) / ( ) ' ( ) / ( )Ee n Ex n c Ee n N Ex n N> − − , or 

( ) / ( ) ' 1/ 1Ee n Ex n c Ee Ex>  go to step 2 and redo the 

direction search; otherwise, go to step 5 and update.   

If the secondary path is stationary, then the performance 

monitoring stage is not needed. Also, the measurement of the 

reference signal mean power could be eliminated if the reference 

noise is wide sense stationary. This method can also be applied 

to narrow-band noise, or even broad-band noise, if at that band 

the secondary path phase response satisfies 

2 2
k S k

π ππ πω− + < ∠ < +  k an arbitrary integer (13) 

Updating 

Adaptive Filter 

Direction 

Search 

Performance 

Mornitor 

Bad 

Good 

Initialization 

Figure. 4. Diagram of proposed algorithm for single frequency 

noise 

4. BROADBAND ANC WITHOUT SECONDARY PATH 

IDENTIFICATION 

The algorithm for single frequency noise without the secondary 

path identification has some application in practice. However, 

when the noise to be cancelled is broad-band noise, or when the 

secondary path phase response doesn’t satisfy Eq. (13), then the 

above proposed method can’t be applied.  In this case, we can 

employ the method introduced in [10] or [11] to divide the 

broad-band signal into a narrow-band signal, and try to make 

each sub-band signal meet the condition in (13). Then we can 

apply the method discussed above in Section 3 to each sub-band. 

The derived sub-band implementation of ANC for broadband 

noise without identifying the secondary path follows: 

1. Sub-band analysis of the reference and error signals as in 

[10, 11].  

2. Determine the appropriate update direction. To avoid sub-

band interference, we only determine one sub-band at a 

time. Thus, we only update the coefficients in one sub-band 

when using Morgan’s configuration [10], or we update the 

adaptive filter coefficients based on one sub-band reference 

and error signal in DeBrunner’s configuration [11]. 

3. Update the adaptive filter while monitoring system 

performance exactly as described in Section 3. If the 

performance deteriorated, we would need to redo step 2.  

The block diagram of the resulting algorithm that is based on 

DeBrunner’s configuration is shown in Figure 5.  The number of 

sub-bands is the critical factor. If we have prior knowledge of 

the secondary path phase response, we can choose the filter bank 

so that the phase response of each sub-band for the secondary 

path satisfies (13). Otherwise, we can use many sub-bands. 

However, increasing the number of sub-bands increases the 

decimation rate in Morgan’s configuration with a corresponding 

convergence lag, while the increase means an additional 

computational burden in DeBrunner’s configuration. 

Furthermore, because our algorithm needs to find the adaptive 

filter direction for each sub-band, we will have a corresponding 

increase in the time spent in the direction searching stage. 

To alleviate this concern, we propose an adaptive sub-band 

selection method. At the sub-band analysis stage, we first  guess 

the number of sub-bands required to do the analysis. Then we 

determine the appropriate search direction for each sub-band. 

However if we change the sign of the step size µ , we need to 

make sure this step size µ  reduces the residual noise power. If 

not, it means the phase response of the secondary path in this 

sub-band does not satisfy (13), and consequently we need more 

sub-bands. Thus, we add more sub-bands and search the 

directions for each newly created sub-band. The flowchart of this 

proposed algorithm combined with the adaptive sub-band 

selection is shown in Figure 6. 
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Figure 5. Sub-band implementation of ANC without identifying 

the secondary path based on DeBrunner’s method (The dashed 

line is the optional performance monitoring stage). 
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Figure 6. Broadband ANC without secondary path identification 

with adaptive sub-band selection 

5. SIMULATION RESULTS

We have space for only one simulation example of broadband 

ANC without identifying the secondary path as in Fig. 5 -- a four 

sub-band example with the same coefficients as in [12]. The 

ANC system is sampled at 100 Hz, the main path is modeled by 

an FIR filter with impulse response [0 0 0 1 -2.7083 4.1861 -

3.0451 0.73071]; the secondary path is initiallymodeled by an 

IIR filter with numerator [0 1 0.96 0.4923] and denominator [1 

1.06 0.3352]. At 120s the secondary path changes to an FIR 

filter model with impulse response [1 0.7 0.3352 -0.2 0.02]. 

The direction search for each sub-band takes 2 seconds, i.e. 200 

samples. The learning curve for an average of 50 runs is shown 

in Fig. 7. From this figure, we see that our algorithm is robust to 

the sudden change of the secondary path. The filtered-x LMS 

algorithm requires online secondary path identification for this 

situation. However, as the simulations show in [12], most ANC 

with online secondary path identification will diverge. 

6. CONCLUSION AND DISCUSSION

In this paper, we analyzed the filtered-x LMS algorithm and 

point out the 90± °  bound property from a geometrical point of 

view. With this new insight, we first propose a new ANC 

algorithm without the secondary path identification for active 

control of a single frequency noise and certain narrow-band 

noise. We extend this algorithm to control broadband noise by 

employing a sub-band implementation of the ANC algorithm. 

Our proposed algorithms outperform other available algorithms 

from either convergence rate, or implementation cost, or both. 

Compared to the conventional filtered-x LMS, our proposed 

algorithms require significantly fewer computations. However, 

as can be seen in Figs. 2 and 3, without the secondary path 

identification, the adaptive filter converges more slowly. 

Currently, we are working on a new method to increase the 

convergence rate of these proposed methods. 

Fig 7. Learning curve for a sudden change of the secodnary path  
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