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ABSTRACT

This paper proposes a robust and stable fast affine
projection algorithm based on the Gauss-Seidel method,
the so called modified Gauss-Seidel fast affine projection
algorithm. The proposed algorithm is generalized for
simplified Volterra filters as well.  The computational
complexity of both the modified Gauss-Seidel fast affine
projection algorithm and its generalization for Simplified
Volterra filters is derived and their performance for
acoustic echo cancellation is assessed.

1. INTRODUCTION 

In echo cancellation systems, an adaptive filter algorithm
is used to reduce the echo. The echo path is usually
modeled by a linear filter. The known normalized Least 
Mean Squares (NLMS) algorithm has been widely used, 
but it has a slow asymptotic convergence. The affine
projection algorithm (APA) can be considered as a
generalization of the NLMS algorithm that provides a
much improved convergence speed compared to
stochastic gradient descent algorithms, although it is
sensitive to high level of noise [1]. It has a performance
that rivals the more complex Recursive Least Squares 
(RLS) algorithms in many situations.  However, the Fast 
Affine Projection (FAP) algorithm proposed in [2-3]
suffers from numerical instability, when implemented
with an embedded fast RLS algorithm. Other difficulties
are its memory requirements and the code overhead. In [3]
the relation between Row Action Projections (RAP),
APA, and Gauss-Seidel is discussed. Other fast affine
projection alternatives have been proposed in [4-6].
However, these variants are suitable for values of the step
size close to 1 (e.g. 0 ). For such values, these 

algorithms have a fast convergence, but they exhibit a
high sensitivity to noisy inputs. They employ   some
approximations that degrade the performance the original 
APA can achieve.

17.

Unlike these FAP alternatives the modified Gauss-Seidel 
FAP (MGSFAP) algorithm, proposed in this paper, can

employ any step size  like the original FAP [2-3].

Therefore, it is more robust to noisy conditions.
Moreover, it is numerically less complex than other
similar FAPs for typical values of the projection order.

1,0

The outline of the paper is as follows. The MGSFAP
algorithm is described in Section 2. A generalization of 
the proposed algorithm for simplified Volterra filters
(SVF), abbreviated as MGSFAP-SVF, is also proposed in
a similar way with that in [7]. Moreover, a voice activity
detector is proposed in order to tackle the sensitivity of
SVF structure. In Section 3, the behavior of MGSFAP and
MGSFAP-SVF algorithms for echo cancellation in a
double-talk scenario is examined. In the same section, the
computational complexity of the proposed algorithms is
derived and compared to other commonly used FAP 
algorithms. Section 4 concludes the paper.

2. THE ALGORITHMS

Henceforth,  most of the notations in [2] are used. Let

be the input signal, be the desired output

signal and be the output error. We denote by L the

filter length, and by N the affine projection order. In the

following, is the auto-correlation matrix of the

input signal,  is the identity matrix, is a 

regularization factor,  is the step size. Let 
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, where  represents the p-th

element of and moving down on the diagonal the

left top submatrix of . Here are 

the equations of a general FAP algorithm.
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Initialization

  (1) 

For each 
nx   (2) 

~r                 (3) 

update using r   (4) 

(5)

                              (6) 

Solve                                                   (7a) 

Or                                                   (7b) 

                                                 (8) 

nEN 11                            (9) 

The key element in a FAP algorithm is the approach to
solve the linear system in (7a). The choice of the approach 
(i.e., direct or iterative) determines the stability and
robustness of the FAP algorithm. Several proposed FAP
algorithms use the following approximation [4-6]: if

 (non-relaxed case) the error vector reduces to a

scalar and only the first column of the inverse of the 
autocorrelation matrix is needed in order to find .

However, this approximation holds for  as 

well.  In [5], the Gauss-Seidel (GS) method is used to

solve the linear system

n

1

R nn , where 

. It is known that if the matrix is

symmetric and positive definite, the GS method is
guaranteed to converge. It was shown in [5] and
confirmed in [6] that one GS iteration is enough for a near 
optimal performance. However, for an arbitrary , the 

solution of the linear system

1,b 0 nR

nnR  is preferable 

to the matrix inversion. Like in the Gauss-Seidel Fast
Affine Projection (GSFAP) algorithm, we propose to use
the GS method for this purpose. We have called this
algorithm the modified Gauss-Seidel fast affine projection
(MGSFAP).
It is known that low cost loudspeakers or microphones
introduce nonlinear distortions, especially at high
volumes. In such cases, the performance of a linear 

acoustic canceller degrades. A common approach is to 
consider nonlinear models [7-8]. Sometimes in the case of 
the nonlinear distortions the simplified Volterra filters 
(SVF) can achieve better system identification than a
linear one, but at the price of a much higher complexity
[7-8]. We consider memory-less non-linearities that have
been proposed as a reliable model for the nonlinearities 
that occur in amplifiers and loudspeakers [8]. The 
MGSFAP is generalized for SVFs and the resulted
algorithm is abbreviated as  MGSFAP-SVF. As shown in
[7], only the computation of the input vector and the
generalized correlations are affected. We denote by O the
order of the simplified Volterra filter. The size of the
weight vector becomes OL instead of L. The extended
input vector has OL elements and the following form

2 2, ... 1 , , ... 1 ...

..., , ..., 1O O

x n x n L x n x n L

x n x n L
x      (10) 

Let  be the filter coefficient

vector. The Eq. 11 replaces Eq. 2 as follows
for
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As shown in [7], the nonlinear parameters were adapted
only during voiced sections. Therefore, a voice activity
detection algorithm (VAD) is needed. Its performance
requirements are not high. It should determine relatively
well the voiced sections, since the stability of the
algorithm is greatly improved by the regularization
method. Many approaches were proposed, for example
there are algorithms based on the short-term energy, zero 
crossing rate, cepstral features, a periodicity measure,
statistical models, etc. (see [9] and the references therein). 
The energy-based approaches to speech detection suffer 
from a lack of robustness and fail to work well in a wide
range of SNR, unless some care is taken. We used the
algorithm proposed in [10] which is exploiting the
similarity between the signal and its residual prediction by
computing the magnitude of their coherence function.
Purely noise frames have a coherence function that admits
a value close to 1, while the value of the coherence 
function on voiced frames is close to 0. The coherence 
function admits an intermediate value between 0 and 1 for
unvoiced frames. A threshold is used in order to decide on
the nature of the considered frame. It was found that a
threshold value equal to 0.85 is a good compromise for 
different noise situations [10].  The algorithm achieves a
satisfactory performance, it has few parameters to adjust 
and it simple to implement. In integrated systems, some
speech coding function (LP analysis or residual prediction
signal) can be re-used in this case.
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3. SIMULATIONS 

In our acoustic echo cancellation simulations the
excitation signal is a speech signal, sampled at 8 kHz. The
convergence of the algorithm was compared by using the
squared norm of the difference between the car cabin
impulse response and the adaptive filter coefficients in 
dB.

Fig. 1. The error norm between the exact solution and the
iterated solution of  for two values of the step size a) 

 and b) . The result of  GS iterations

is plotted with a solid line, while the result of GS

iteration is plotted with a dotted line. c) The learning
curves for NLMS, GSFAP, MGSFAP ( and

) and ideal FAP algorithms
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The Gauss-Seidel procedure requires the execution of a 
number of iterations in order to obtain an acceptable 
accuracy  in the solution of the linear system. It can be 
seen in Figs. 1a and 1b that fewer GS iterations are
needed in order to obtain about the same error norm
between the exact solution of and the iterative one

for  than for . Fig. 1c shows that the

performance of the MGSFAP is improved with the
number of GS iterations. It can be seen that MGSFAP
performance closely approaches that of the ideal FAP 
when for a small step size. Moreover, its 

performance is better than that of NLMS and GSFAP or
other non-relaxed FAPs, (e.g. CGFAP [4]). We found that
two GS iterations are enough for step size values close to
1. Therefore, if a variable step size is used, the number of 
GS iterations can be varied accordingly. The
regularization is a necessary part of the algorithm,
especially in noisy conditions and double-talk scenarios.
Often when there is near-end speech activity, SNR fall

sharply well below 0 dB. We used a simple regularization
method based on the approach described in [6]. The

regularization parameter is  if 

and  otherwise, where 

 and and are the time-averaged

powers of and respectively. It can be seen 

from Fig. 2 that MGSFAP with 4 GS iterations closely
matches the performance of the ideal FAP algorithm in
the double-talk scenario. Similar results were obtained for 
moderate SNR values, different filter lengths, and
projection orders. 
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Fig. 2. Comparison of the misalignment (in dB) provided
by the ideal FAP and MGSFAP with time-varying
regularization in a double-talk scenario for

.,1/4,

Next, we examined the performance of the MGSFAP-
SVF algorithm. We simulated the algorithm performance
using test signals recorded in a car cabin. The echo return 
loss enhancement (ERLE) is computed in windows of 100 
ms as follows

E y

E e
(12)

The results are similar with those obtained in [7]. Fig. 3a
shows the VAD decision where 1 indicates speech frames,
while 0 indicates silence frames. The ERLE performance
of the MGSFAP for SVF is lower in high volume level
than in the normal volume level (Fig. 3c). Also, it can be
seen from Fig. 3b that the difference between the NLMS 
and MGSFAP for SVF in high volume level is rather
small. These benefits were obtained at the cost of much
increased complexity than that of the linear algorithms.
The linear system can be solved with any direct method

(e.g. Cholesky or  factorization method). If the last
method is applied the number of multiply and accumulate

(MAC) operations is  and N

divisions  in excess of  that are common to all FAP 
algorithms. The Cholesky method is more complicated
having about the same number of MACs and divisions,
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but it has N square root operations (cycles expensive). The 

MGSFAP algorithm ( ) needs 

MACs and 1 division, while the original FAP [2] needs 
 MACs and 5 divisions.
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Fig. 3. a) The speech signal, and the VAD decision; b)
ERLE of the MGSFAP algorithm ( , 4 ) on 

high (solid line) and normal (dotted line) volume levels; c) 
Improvement achieved over NLMS using a 5

N

th order SVF 
filter, in the same situations.

Fig. 4. Computational complexity between  the considered
FAP algorithms (a division is counted as 25 MACs [4]).

The CGFAP algorithm [4] needs  MACs

and 1 division, whereas the GSFAP needs
MACs and 1 division. As can be seen in Fig. 4, the
MGSFAP compares favorably with the relaxed methods,
and it is more efficient than them for . However, 
the original FAP [2] is unstable, while MGSFAP was 
stable in our simulations. If the stabilization procedure
proposed in [2] is used then MGSFAP ( )  is more

efficient for (typical situation for most voice 
applications). The complexity of the non-relaxed methods
is smaller, but their performance is not very good for 
lower step sizes (Fig. 1c). The complexity of the
MGSFAP-SVF algorithm is much higher. For example, in
the reported experiment it needed approximately 2600 

MACs, while NLMS needed only 529 MACs, and
MGSFAP 559 MACs.
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4. CONCLUSIONS 

We have proposed the modified Gauss-Seidel fast affine
projection algorithm and extended it for simplified
Volterra filters. We have demonstrated that the new
algorithm has a fast convergence, low complexity and 
behaves well in a double-talk scenario. Therefore, the
proposed algorithms represent interesting options for 
practical acoustic echo cancellation systems.
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