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ABSTRACT

Spectral domain B-spline identification is proposed for acoustic
echo cancellation. Two approaches are considered. The first is
based on solution of normal equations; we describe an efficient
technique for such a solution, which benefits from the sparseness
of the system matrix due to B-splines. The second approach is
based on using local splines, enabling further simplification. We
also show how the proposed techniques can be used for efficient
double-talk detection. The echo cancellation performance and com-
plexity of the proposed techniques are compared with that of a
low-complexity cross-spectral technique and the affine projection
(AP) algorithm possessing high cancellation performance. The B-
spline identification allows cancellation performance comparable
with that of the AP algorithm and complexity close to that of the
cross-spectral algorithm.

1. INTRODUCTION

Acoustic echo cancellation is based on identification of the acous-
tic impulse or frequency response, modeling the echo, and sub-
tracting the echo model from an input (microphone) signal. A va-
riety of methods have been proposed for solution of the problem
in both time and spectral domains. Most often, time-domain FIR
filtering, which allows a low processing delay, is used to model
the echo. For estimation of FIR filter taps, the classical NLMS
algorithm is often used in practice, providing low complexity, but
also possessing low convergence speed. A faster convergence is
achieved by the affine projection (AP) algorithm [1]; however, this
is complex for implementation. The Fast AP algorithm has been
proposed [2], but it demonstrates numerical instability and it is
sensitive to noise. Good cancellation performance is achieved by
using the least squares (LS) block approach [3]. However, even
with the Toeplitz approximation of normal equations in the LS
problem and use of the computationally efficient Levinson algo-
rithm, the complexity of the echo canceler is still high.

Spectral-domain echo cancelers are capable of reducing the
computational load, but they lead to a high processing delay [4].
To achieve a low delay and low complexity, time-domain FIR fil-
tering and spectral-domain block identification are used in the tech-
nique proposed in [5]. However, this technique demonstrates in-
stability and its performance significantly degrades in the presence
of noise and double-talk.

In this paper, we adopt the approach from [5]. However, we
propose B-spline identification of the acoustic frequency response;
specifically, we use cubic B-splines. Two approaches for solving
the LS problem are considered. The first is based on solution of
normal equations. We show how the recently introduced dichoto-
mous coordinate descent (DCD) algorithm [6] can be used for this
purpose, by benefiting from the sparseness of the system matrix

due to B-splines, as well as multiplication-free iterations. The sec-
ond approach is based on using local splines, enabling further sim-
plification, but resulting in somewhat higher approximation error.
We also show how the spectral domain identification can be used
for efficient double-talk detection. The performance and complex-
ity of the proposed techniques are compared by simulation with
that of the cross-spectral technique from [5] and the AP algorithm.

2. SPECTRAL-DOMAIN SPLINE-IDENTIFICATION

In application to acoustic echo cancellation, the identification prob-
lem can be described as follows. The microphone signal is

y(t) = u(t) + z(t) (1)

where t is discrete time, u(t) =
∑L−1

τ=0 x(t − τ )h(τ ) is the echo
signal, z(t) is the near-end signal and/or white Gaussian noise,
x(t) is the excitation (far-end) signal, h(τ ) is the acoustic impulse
response to be estimated, and L is the length of h(τ ). In the spec-
tral domain, this can be represented as

Y (ωk) = X(ωk)H(ωk) + Z(ωk) (2)

where X(ωk) is the spectrum of the excitation signal x(t), Z(ωk)
is the spectrum of the noise and near-end signal z(t), and ωk ∈
Ω form a frequency grid in the frequency bandwidth of interest
Ω = [ωl, ωu]. The spectra of microphone and excitation signals
are calculated over a block of N samples by using FFT as

Y (ωk) =
1

N

N−1∑
i=0

w(i)y(i + t − N + 1)e−j 2πki
N , (3)

X(ωk) =
1

N

N−1∑
i=0

w(i)x(i + t − N + 1)e−j 2πki
N (4)

where w(i) is a window (e.g., the Hamming window). Since y(t)
and x(t) are real-valued, we are only interested in the first N/2
frequency bins of the FFTs, k = 0, . . . , N/2 − 1.

The frequency response H(ωk) is approximated by a series

Ĥ(ωk) =

Nϕ∑
p=1

cpϕp(ωk) (5)

where {ϕp(ωk)} are Nϕ basis functions. Minimisation of the error

ε2 =
∑

ωk∈Ω

∣∣∣Y (ωk) − X(ωk)Ĥ(ωk)
∣∣∣2 (6)
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results in expansion coefficients c = [c1, . . . , cNϕ ]T being the
solution of normal equations

Rc = ξ (7)

where the vector ξ contains elements

ξq =
∑

ωk∈Ω

SY X(ωk)ϕq(ωk), q = 1, . . . , Nϕ (8)

the matrix R contains elements

rqp =
∑

ωk∈Ω

SXX(ωk)ϕq(ωk)ϕ∗
p(ωk), q, p = 1, . . . , Nϕ, (9)

SY X = Y (ωk)X∗(ωk) and SXX = X(ωk)X∗(ωk) are respec-
tively the cross-spectrum and auto-spectrum, and (·)∗ denotes com-
plex conjugate. To improve the convergence when solving the sys-
tem (7), the matrix R is regularised as R ⇒ R+ δI, where δ > 0
is a regularisation parameter and I is the identity matrix.

If basis functions are complex harmonics, the echo path is
modeled as a FIR filter with Nϕ filter taps, R is the auto-correlation
matrix of the excitation signal, and ξ is the cross-correlation vector
of the excitation and microphone signals. This case corresponds to
the block LS approach adopted in [3]. Unfortunately, for harmonic
basis functions, the matrix R in general is not sparse, which makes
solving the system (7) with large Nϕ a complicated problem.

We propose polynomial spline-approximation. Splines pro-
vide a low approximation error with a low degree of the polyno-
mial; cubic splines are considered to provide the best trade off
between accuracy and complexity [7, 8, 9]. Among spline basis
functions, B-splines possess features attractive for implementa-
tion [7, 8], e.g., they have the minimum support which leads to
simple calculation of the sparse matrix R and vector ξ, and sim-
plify (due to the sparseness) the solution of equations (7). Below
we use cubic B-splines

ϕp(ωk) = b3(ω − ωl − (p − 2)∆ω) (10)

where ∆ω = (ωu − ωl)/(Nϕ − 3) and

b3(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1
6

(
2 − |ω|

∆ω

)3

− 2
3

(
1 − |ω|

∆ω

)3

, 0 ≤ |ω| < ∆ω

1
6

(
2 − |ω|

∆ω

)3

, ∆ω ≤ |ω| < 2∆ω

0, otherwise
(11)

It is convenient to choose ∆ω as a multiple of the FFT bin: ∆ω =
(2π/N)D, where D is an integer. Then samples of basis functions
are discrete shifts of 4D samples of b3(ω) by D FFT frequency
bins. Fig.1 shows a few basis B-splines in a part of the frequency
range Ω in the case of N = 8192, D = 7, and the sampling
frequency Fs = 8 kHz; circles indicate B-spline values at the FFT
frequencies.

The block estimate of the impulse response is obtained by the
inverse Fourier transform and truncation:

ĥb(τ ) =
1

N

N−1∑
k=0

Ĥ(ωk)ejωkτ , τ = 0, 1, . . . , L − 1. (12)

The final estimate of the room impulse response h(τ ) is updated
as

ĥt(τ ) = (1−αt)ĥt−M (τ )+αtĥb(τ ), τ = 0, . . . , L−1, (13)
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Fig. 1. Basis B-splines; D = 7, N = 8192, Fs = 8 kHz.

where M is the number of samples between two blocks and αt

is a time-varying forgetting factor determined as described in sec-
tion 5. The estimate ĥt(τ ) is used for FIR filtering to model the
echo; it remains constant over M samples until the next block pro-
cessing.

3. DCD ALGORITHM

A significant computational problem with such identification is in
the solution of the system of equations (7). The use of conven-
tional techniques like the Cholesky decomposition leads to high
complexity (see section 7).

We use the recently introduced DCD algorithm [6]. It is based
on binary representation of elements of the solution vector with
Mb bits within an amplitude range [−H, H ]. It starts an iterative
approximation of the solution vector c from the most significant
bit. Once the most significant bit has been found for all vector el-
ements, the algorithm starts updating the next less significant bit,
and so on. If an update happens (such an iteration is called ‘suc-
cessful’), the vector ξ is also updated. Parameters of the DCD
algorithm are the number of bits Mb representing elements of the
vector c within the amplitude range [−H,H ] and the maximum
number of iterations Nit.

As R is real, the system can be solved separately for real
ξ(r) and imaginary ξ(i) parts of the vector ξ = ξ(r) + jξ(i) as
Rc(r) = ξ(r) and Rc(i) = ξ(i), respectively. Then the solution is
represented as c = c(r) + jc(i).

In application to the cubic B-spline identification, the DCD
algorithm can be described as follows (for the real part of the sys-
tem).

Initialization: c(r) = 0, the step-size d = H .
For every mth bit, m = 1, . . . , Mb, the step-size is reduced

as d = d/2, the iteration counter it = 0, and iterations start:
(1) Indicator of ‘successful’ iterations is reset, F lag = 0, and

the iteration counter is incremented, it = it + 1;
(2) For p = 0, . . . , Nϕ − 1: if |ξ(r)

p | > (d/2)rpp, then the
iteration is ‘successful’, F lag = 1, c

(r)
p = c

(r)
p + d, elements of

the vector ξ with indexes q ∈ [max(1, p − n), min(Nϕ, p + n)]

are updated as ξ
(r)
q = ξ

(r)
q − sgn(ξ

(r)
p )drpq .

(3) If it = Nit, then the algorithm stops.
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(4) If F lag = 1, then steps (1), (2), and (3) repeat; otherwise
iterations start for the next less significant bit (m = m + 1) with a
reduced step-size (d = d/2).

The DCD algorithm guarantees convergence to the true solu-
tion if elements of the true solution vector c are within the interval
[−H,H ]. If H is a power of two, then multiplications by fac-
tors of power of two are only used; these can be replaced by bit
shifts. Thus, the DCD algorithm can be implemented without ex-
plicit multiplications, which may be useful in hardware implemen-
tation.

4. LOCAL SPLINE-APPROXIMATION

Although the DCD algorithm allows efficient solution of normal
equations, it may still require a considerable computational load.
The use of local splines allows us to avoid such calculations with
a slightly higher approximation error [9]. The spline coefficients
cn can be calculated as follows

cq = a0ξq + a1(ξq−1 + ξq+1) + a2(ξq−2 + ξq+2), (14)

ξq =

∑
ωk∈Ωq

SY X(ωk)∑
ωk∈Ωq

SXX(ωk)
, (15)

where Ωq = [ωl +∆ω(q−2)−∆ω/2, ωl +∆ω(q−2)+∆ω/2].
The weights should satisfy the condition a0 + 2a1 + 2a2 = 1 and
they are tuned to obtain the best cancellation performance. In our
simulation, the weights are a0 = 1.94, a1 = −0.58, a2 = 0.11.

5. DOUBLE-TALK DETECTION

Relationship between the error ε2 in (6) and the energy of the mi-
crophone signal Ey =

∑
ωk∈Ω |Y (ωk)|2 characterizes accuracy

of the identification. If the accuracy is low, i.e. ε2 is close to Ey

(e.g. in double-talk situation), then the block impulse response es-
timate is ignored by setting αt = 0. If ε2 is much smaller than Ey,
we can update the impulse response estimate by adding the block
estimate with the weight αt close to 1. This can be considered as
a spectral domain implementation of the ”two-path” approach [4].
Note that main computations for calculation of ε2 and Ey have al-
ready been done and implementation of this approach requires a
small extra computational load. In the simulation below, we use
the following mapping of the relationship between ε2 and Ey to
the forgetting factor αt:

αt =

⎧⎪⎪⎨
⎪⎪⎩

α(1), ε2 < ρ(1)Ey

α(2), ρ(1)Ey ≤ ε2 < ρ(2)Ey

α(3), ρ(2)Ey ≤ ε2 < ρ(3)Ey

0, ε2 ≥ ρ(3)Ey.

(16)

The vectors α = [α(1), α(2), α(3)] and ρ = [ρ(1), ρ(2), ρ(3)]
are chosen to obtain the best cancellation performance. Other de-
pendencies αt on ε2 and Ey can also be used. We have found the
mapping (16) efficient and simple for implementation.

6. NUMERICAL RESULTS

We simulate acoustic echo cancellation in the following scenar-
ios. The acoustic impulse response h = [h(0), . . . , h(L − 1)]
has a length L = 512. The excitation signal is 11-sec female
speech sampled at Fs = 8 kHz with a 16-bit resolution. Exper-
imental plots have been obtained by averaging the misalignment
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Fig. 2. Identification performance; SNR=30dB
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Fig. 3. Identification performance; SNR=15dB

||h − ĥt||2/||h||2 in 20 trials. In each trial, new excitation speech
and noise signals are used. Echo attenuation (ERLE) is calculated
over intervals between 2nd and 11th seconds and averaged over the
20 trials. In double-talk scenarios, the near-end speech is applied
between 4th and 7th seconds with a power equal to that of the echo
signal.

We compare: (1) optimal splines with ideal matrix inversion;
(2) optimal splines with the DCD algorithm; (3) local splines; (4)
the AP algorithm; and (5) the cross-spectral algorithm. Param-
eters of the spline identification are: N = 8192, M = 2000,
D = 7, Nϕ = 585, δ = 0.5, α = [0.4, 0.1, 0.05], ρ =
[0.015, 0.1, 0.25], ωl = 0, ωu = πFs. Parameters of the DCD
algorithm are: H = 1, Mb = 8, Nit = 20. In the AP algorithm,
the AP order is NAP = 8, the step-size is 0.125, and the regu-
larisation parameter δ = 108. In the cross-spectral algorithm, the
average of cross-spectrum and auto-spectrum is performed over
intervals of 0.64 sec as in [5].

Fig.2 shows misalignment for scenarios with noise 30 dB down
from the echo (SNR = 30 dB). The optimal splines with ideal
matrix inversion and with the DCD algorithm demostrate equal
performance, therefore we show one plot only. Local splines pro-
vide a slightly higher (by about 1 dB) steady-state misalignment
than the optimal splines. The convergence speed of spline algo-
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Table 1. Echo attenuation in noisy environments
Algorithm SNR=15dB SNR=30dB

Opt. splines 20.8dB 29.7dB
Opt. splines-DCD 20.8dB 29.7dB

Local splines 19.9dB 28.7dB
AP algorithm 19.1dB 33.8dB
Cross-spectral 11.5dB 22.0dB

Table 2. Echo attenuation in noisy and double-talk environments
Algorithm SNR=15dB SNR=30dB

Opt. splines 20.1dB 28.4dB
Opt. splines-DCD 20.1dB 28.4dB

Local splines 19.2dB 27.6dB

rithms is close to that of the AP algorithm. The cross-spectral
algorithm has a poorer performance. For SNR = 15 dB (Fig.3),
optimal splines provide about 2 dB, 4 dB, and 12 dB improve-
ment of the steady-state misalignment over local splines, the AP
algorithm, and the cross-spectral algorithm, respectively. The con-
vergence of spline algorithms is slower than that of the AP algo-
rithm. This is due to a smaller forgetting factor αt (16) as the error
ε2 in the higher noise is increased; the convergence speed can be
increased by increasing α(2), but at the expense of the steady-
state performance. The echo attenuation (ERLE) performance for
noisy scenarios is shown in Table 1. For double-talk and noisy
scenarios, the echo attenuation is shown in Table 2. It can be seen
that the double-talk does not affect significantly the performance
of the proposed echo cancelers, which demonstrates efficiency of
the double-talk detection algorithm described in section 5.

We can conclude that the cancellation performance of the spline
algorithms is comparable with that of the AP algorithm and signif-
icantly better than that of the cross-spectral algorithm.

7. COMPLEXITY

The complexity of the optimal cubic spline identification can be
approximately represented as Popt ≈ 2Pw + 3PF F T + PSXX +
PSXY + PR + Pξ + Pc + PĤ . The windowing in (3) or (4)
requires Pw = N MACs (multiply-accumulate operations). FFTs
in (3) and (4) and inverse FFT in (12) each requires about PF F T =
Nlog2(N) MACs. Cross-spectrum and auto-spectrum calculation
for N/2 frequency bins require PSXY = 2N and PSXX = N
MACs, respectively. Due to the symmetry of the matrix R, the fact
that it is 7-diagonal, and the cubic B-splines have a support of 4D
samples, the computational load for calculating R is PR = 10N
MACs. Similarly, calculation of ξ requires Pξ = 4N MACs. The
frequency response estimate (5) requires PĤ = 4N MACs. So-
lution of the system (7) by using such an efficient technique as
the Cholesky algorithm would require Pc = N3

ϕ/3 MACs; for
Nϕ = 585, it would be too complex for real-time, Pc ≈ 7 · 107

MACs. For the DCD algorithm, in all simulation trials Pc has
not exceeded 1.8 · 105 operations, which is significantly smaller.
Then the total computational load is Popt ≈ 6.9 · 105 MACs or
Popt/M ≈ 340 MACs/sample. For local splines, similar anal-
ysis results in a total of 190 MACs/sample. The cross-spectral
technique requires 60 MACs/sample. The AP algorithm (together
with the FIR filtering) requires about 4600 MACs/sample plus an
extra complexity for inversion of a NAP × NAP matrix.

Thus, the optimal spline identification with the DCD algo-
rithm, local splines, the cross-spectral and AP algorithms require
340, 190, 90, and 4600 MACs/sample, respectively. By taking
into account the FIR filtering and normalizing to the number of
FIR taps L, these can be represented as 1.7, 1.4, 1.1, and 9.0
MACs/sample/tap, respectively. Note that the NLMS algorithm
requires 2 MACs/sample/tap; thus, all the spectral-domain algo-
rithms have smaller complexity than the NLMS algorithm.

8. CONCLUSIONS

We have proposed new acoustic echo cancellation algorithms. These
are based on time-domain FIR filtering and spectral domain cubic
spline identification of the acoustic frequency response. We have
considered optimal splines with ideal matrix inversion, optimal
splines with the DCD algorithm, and local splines. Ideal matrix
inversion and the DCD algorithm result in identical echo cancella-
tion performance, while the DCD algorithm allows significant re-
duction in the complexity. The DCD-based optimal B-spline iden-
tification requires 1.7 MACs/sample/tap, while local splines re-
quire 1.4 MACs/sample/tap. The cross-spectral technique, though
having a smaller complexity (1.1 MACs/sample/tap), provides poorer
cancellation performance, especially at low SNRs. The affine pro-
jection algorithm provides a better echo attenuation at high SNRs
and comparable at low SNRs; however, it is complex for imple-
mentation. The proposed techniques have also been shown to pro-
vide efficient double-talk detection.
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