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ABSTRACT

We consider in this paper a model for nonlinear multichan-
nel active noise controllers based on truncated Volterra fil-
ters. A previously proposed approximate Affine Projection
(AP) adaptation algorithm is revisited with the aim of re-
ducing its implementation complexity by applying suitable
partial update strategies. The experimental results confirm
that remarkable computational reductions are achieved with
limited degradations of the convergence behavior.

1. INTRODUCTION

Methods for active noise control have been intensively stu-
died in the last three decades and have already provided
useful applications in vibration and acoustic noise control
tasks [1]. To spatially extend the silenced region, a mul-
tichannel approach can be applied using sets of reference
sensors, actuator sources and error microphones. A general
scheme describing the so-called feed-forward approach is
shown in Fig. 1, where I input sensors are used to collect the
corresponding input signals. In the controller, any input i,
1 ≤ i ≤ I , is usually connected to any output j, 1 ≤ j ≤ J ,
with an FIR filter. The controller computes J output si-
gnals which are propagated to the K error sensors. Since
the input signals filtered by the impulse responses of the se-
condary paths are used, the coefficients of the FIR filters are
updated by means of the so-called Filtered-X versions of
the standard adaptation algorithms. The main drawbacks of
the multichannel approach are the complexity of the coef-
ficient updates, the data storage requirements and the slow
convergence of the adaptive algorithms [2]. In order to im-
prove the convergence speed, Affine Projection (AP) algo-
rithms have been used [3] in place of the usual LMS algo-
rithms but at the expense of a further, even though limited,
increment of the complexity of updates. It is thus necessary
to resort to appropriate techniques for the reduction of the
update complexity. This requirement becomes even more
stringent if nonlinearities are considered. Presently, most of
the studies presented in the literature refer to linear models
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Fig. 1. Multichannel active noise control

and linear time-invariant controllers represent the state-of-
the-art in this field. On the other hand, nonlinear modeling
techniques may bring new insights and suggest new deve-
lopments offering an increase of performance. In fact, it
is often recognized that nonlinearities affect actual applica-
tions [4, 5]. To keep low the updating complexity without
negatively affecting the performance of adaptation algori-
thms it is necessary to choose an appropriate model. Our
choice is for truncated Volterra filters which can efficiently
model a large class of nonlinear systems [6]. These filters
share with the linear ones the property that their output is
linear with respect to the filter coefficients. As a conse-
quence, the adaptation algorithms derived for linear filters
can be appropriately extended to the nonlinear case. Mo-
reover, truncated Volterra filters can be implemented in the
form of multichannel filter banks involving FIR filters. This
possibility is granted by the so-called diagonal representa-
tion [7] that allows a truncated Volterra filter to be described
by the “diagonal” entries of its kernels. This representation
has been used in [5] to derive a Filtered-X LMS algorithm
for single-channel controllers equipped with Volterra filters.

The model we are proposing here for nonlinear multi-
channel active noise control is based on Volterra filters con-
necting any input i to any output j. Such a system has been
implemented in [8] where an approximate AP algorithm has
been derived. This algorithm is revisited in this paper by ex-
ploiting partial update techniques that can offer remarkable
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reductions in the implementation complexity at a limited ex-
pense in the convergence characteristics.

Various techniques have been proposed in the literature
to keep low the implementation complexity of adaptive FIR
filters having long impulse responses. Most of them can
be usefully applied to the Filtered-X algorithms, too, espe-
cially in the multichannel situations. A first approach is ba-
sed on the so-called interpolated FIR filters [9], where a few
impulse response samples are removed and then their va-
lues are derived using some interpolation scheme. Howe-
ver, the success of this implementation is based on the hy-
pothesis that practical FIR filters have an impulse response
with a smooth predictable envelope. Another set of well-
established techniques is based on selective partial updates
(PU) where selected blocks of filter coefficients are updated
at every iteration in a sequential or periodic manner [10] or
by using an appropriate selection criterion [11]. Finally, a
recently proposed approach is based on data-selective up-
dates which are sparse in time. This approach can be sui-
tably described in the framework of the set-membership fil-
tering (SMF) where a filter is designed to achieve a speci-
fied bound on the magnitude of the output error [12]. The
rational for using such techniques for nonlinear controllers
equipped with I × J Volterra filters is that their implemen-
tation based on the diagonal representation involves FIR fil-
ters. On the other hand, the minimization of the K errors
at the silenced zone involve a large number of coefficients
so that updating rules are usually computationally intensive
and thus strongly benefit of partial update strategies.

The outline of this paper is the following: in Section 2,
the derivation of the approximate Filtered-X AP algorithm
of [8] is briefly described. In Section 3 appropriate partial
update techniques are applied. Section 4 includes some si-
mulation results and final remarks are given in Section 5.

2. THE REFERENCE UPDATING ALGORITHM

In this section we briefly summarize the approximate AP
algorithm described in [8]. For sake of simplicity, each filter
connecting any input i to any output j is initially assumed to
be a homogeneous quadratic filter implemented in the form
of a filter bank. To reduce the computational complexity,
the quadratic kernel is described by means of the so-called
triangular representation [6, p. 35]. Each channel of the
filter bank contains an FIR filter formed with the coefficients
of the corresponding upper diagonal of the quadratic kernel.
As a consequence, any output yj(n) from the multichannel
quadratic controller of Fig. 1 can be written as

yj(n) =
I∑

i=1

hT
i,j(n)xi(n). (1)

The vectors hi,j are formed by Qi =
∑Mi

m=1(Ni − m + 1)
elements as shown in [8], where Ni is the memory length of

the homogeneous quadratic filter and M i is the number of
channels actually used, with Mi ≤ Ni. The vectors xi(n)
are formed with the corresponding products of two input
samples collected at the microphone i, 1 ≤ i ≤ I . The
Filtered-X AP algorithm of order L minimizes the coeffi-
cient variations within the constraint that the last L a poste-
riori errors are set to zero. The cost function to be minimi-
zed is given by

ε =
K∑

k=1

eT
k (n)ek(n), (2)

where ek(n) = [ek,1(n) ek,2(n) · · · ek,L(n)]T is the vector
collecting the errors at the K error sensors. Using the de-
rivations in [8], the approximate updating relationship for
each quadratic filter in the controller is written as

hi,j(n + 1) = hi,j(n)−
K∑

k=1

µkGi,j,k(n)
[
GT

i,j,k(n)Gi,j,k(n) + δI
]−1

ek(n). (3)

The step sizes µk are the parameters that control both the
convergence rate and the stability of the algorithm. The
Qi×L matrices Gi,j,k(n) are formed with the input signals
filtered by the impulse responses sk,j(n) of the secondary
paths

Gi,j,k(n) = [sk,j(n) ∗ xi(n) · · ·
· · · sk,j(n − L + 1) ∗ xi(n − L + 1)] . (4)

The L×L inverse matrices in (3) actually alleviate the con-
vergence difficulties due to the correlations existing in the
input vectors to the multichannel filter banks implementing
the Volterra filters. In fact, since the entries in these vectors
are given in form of products of input samples, correlations
exist among them even when the input signals are white [6,
p. 253]. Moreover, the small positive constant δ is used
to avoid possible numerical instabilities. The computation
of the inverse of the matrices is required at each time n.
Even though this step is often a critical one, it should be
noted that for Filtered-X AP algorithms of low orders, i. e.
with L = 2, 3, 4, direct matrix inversion is still an affor-
dable task. Within these conditions, the complexity of the
Filtered-X AP algorithm is O(KLQi) per sample for each
quadratic filter in the controller. It can also be noted that
while the Filtered-X AP algorithm can be applied to quadra-
tic filters characterized by full triangular representations by
simply setting Mi = Ni, using a smaller number of chan-
nels often permits one to still obtain good adaptation per-
formance with a remarkably reduced computational com-
plexity. Moreover, in case of a non-homogeneous quadra-
tic filter, the linear term can be considered as an additional
channel. The vectors hi,j(n) and xi(n) are modified by in-
serting on the top the coefficients of the linear filter and the
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samples of the input signal, respectively. As a consequence,
the updating rule of (3) still applies. In a similar way we
can deal with Volterra kernels of any order p. In fact, if
the pth-order kernel is represented as a sampled hypercube
of the same order, the diagonal representation [7] implies a
change of Cartesian coordinates to coordinates that are ali-
gned along the diagonals of the hypercube. In this way, the
Volterra filter can be again represented in the form of a fil-
ter bank where each filter corresponds to a diagonal of the
hypercube.

3. THE PARTIAL UPDATE METHODS

We describe here the partial update strategies applied to the
updating rule (3).

The Partial Error (PE) technique consists in using se-
quentially at each iteration only one of the K error vectors
ek(n) at a time in place of their combination as in (3). This
method has been used in [10] for linear multichannel con-
trollers equipped with Filtered-X LMS algorithms. This up-
dating rule requires approximately 1

K operations with re-
spect to the original one. This advantage is obtained at the
expense of the convergence speed, even though in our case
we have not experienced reductions proportional to the de-
crease of the computational load, as noted in [10].

In the Partial Error - Partial Update (PE − PU) case,
each measurement of the error vectors ek(n) is used to adapt
a block of coefficients. According to the multichannel fil-
ter bank implementation of the Volterra filters, the natural
choice here is to consider as a block the elements of any
of the kernel diagonals of each Volterra filter and thus se-
quentially adapt them. The procedure is repeated for any of
the Volterra filters in the controller. With reference to the
quadratic case, the updating equation becomes

hm,i,j(n + 1) = hm,i,j(n)−

µkGm,i,j,k(n)
[
GT

m,i,j,k(n)Gm,i,j,k(n) + δI
]−1

ek(n),
(5)

where hm,i,j(n) is the vector formed with the Ni − m + 1
coefficients of the m-th channel, with 1 ≤ m ≤ Mi, and
Gm,i,j,k(n) are the corresponding partitions of G i,j,k(n).
The complexity of this updating rule is reduced by another
factor depending on the number of blocks used.

The previous updating rule can be finally modified using
the concept of Set-Membership Filtering (SMF ). Forcing
the last L a posteriori errors to be zero, the diagonal of each
Volterra kernel in the controller is updated according to the
following rule

hm,i,j(n + 1) =
{

right term of (5) if |ek,1(n)| > eb

hm,i,j(n) otherwise
(6)

for a suitable choice of the threshold error eb [12].

4. SIMULATION RESULTS

We compare in this section some simulation results obtai-
ned with the reference algorithm in (3) and the PE−PU −
SMF algorithm in (6). As shown in [4] for the single-
channel case, a nonlinear controller is beneficial if the se-
condary path is modeled as a non-minimum-phase FIR filter
and the input signal is a nonlinear and deterministic process
of chaotic nature. Such a noise can be efficiently modeled
by a second-order white and predictable nonlinear process
as the logistic noise generated by the equation

ξ(n + 1) = λξ(n)[1 − ξ(n)], (7)

with λ = 4. In the multichannel case we are considering
here, the controller has one input (I = 1) and two out-
puts (J = 2). Two error microphones (K = 2) are used.
The noise source is the logistic chaotic noise of (7) with
ξ(0) = 0.9. The nonlinear process has been normalized in
order to have unit signal power x(i) = ξ(i)/σξ and a ran-
dom noise has been added at the error microphones so that
the SNR is equal to 30dB. The primary paths are mode-
led by two FIR filters with 8 taps while the secondary paths
are modeled by four non-minimum-phase FIR filters with 5
taps. The system is identified using two second-order Vol-
terra filters with linear and quadratic parts of memory length
Ni = 10. The quadratic kernels contain only two channels
(Mi = 2) corresponding to the principal diagonal and the
adjacent one in the triangular representation. The constant
δ has been set equal to 10−3. The step sizes of the linear
and quadratic parts have been fixed so that the residual er-
rors in the experiments (a) and (b) in Figure 2 are close as
much as possible. This figure plots the ensamble average of
the mean attenuation at the error microphones for 50 runs of
the simulation system using (a) the updating rule of (3) and
the PE − PU − SMF method of (6) with (b) quadratic
and (c) linear controllers. The four curves refer to diffe-
rent values of the affine projection order L. Three blocks
of lengthes 10, 10, 9 have been used for each Volterra filter.
The bound eb has been chosen equal to

√
5σ2

n, where σ2
n is

the variance of the additional noise [12], and thus in our ex-
periments eb = 0.0707. It can be seen that the convergence
speed is slightly decreased but the computational load is ap-
proximately reduced by a factor 2 × 6, since K=2 and we
use 3 coefficient blocks for each quadratic filter, and then
by an additional factor ranging from � 2 to � 13 according
to the SMF strategy, as shown in Table I. This Table re-
ports the average number of updates and the residual error
er for the PE − PU − SMF algorithm with fixed error
bounds eb and AP orders L = 2 and L = 4. By increasing
eb, remarkable reductions in the number of updates can be
observed at the expense of limited increases of the residual
errors. Finally, Figure 2 (c) shows for comparison the re-
sults of the PE − PU − SMF algorithm for a controller
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Fig. 2. Mean attenuation at the error microphones using (a)
the reference method (b) the PE − PU − SMF method,
(c) the PE − PU − SMF method with linear controllers.

Table 1. Average number of updates Nu in 1600 iterations
and residual errors er for the PE−PU −SMF algorithm.

eb L Nu er L Nu er

0.0707 2 851 0.0090 4 794 0.0080
0.1000 2 599 0.0091 4 530 0.0084
0.2000 2 188 0.0098 4 124 0.0093

equipped with two FIR filters of equivalent complexity, i. e.
29 coefficients, each one subdivided in 3 blocks of 10, 10,
9 coefficients, respectively. The step size is the same as for
the linear part of the quadratic case of Figure 2 (b) . Figure
2 (c) confirms the results of [4] where it is shown the ad-
vantage of using a nonlinear control model when the input
signals are deterministic processes of chaotic nature.

5. CONCLUDING REMARKS

In this paper it has been shown how partial update techni-
ques can be applied to reduce the computational load of an
approximate AP adaptation algorithm for multichannel non-
linear active noise control. These strategies can be used for
controllers equipped with any order of Volterra filters. Fi-
nally, it is worth mentioning that the ongoing research on
this topic recently allowed us to prove that filtered-X AP al-
gorithms provide a biased estimate of the minimum MSE

solution. Nevertheless, the estimation errors for the algori-
thms presented here have been shown to be very low.
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