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ABSTRACT

In acoustic echo cancellation as, e.g., for mobile communication
receivers, loudspeakers and their amplifiers cause significant non-
linear distortion in the echo path, resulting in a degradation of the
performance of linear echo cancelers. In order to cope with this
type of nonlinear echo paths, we discuss a orthogonalized version
power filters that can be considered as a parallelized realization
of the cascade of a memoryless polynomial followed by a linear
filter. As, in the echo cancellation context, the statistics of the
speech input are non-stationary and not known in advance, the or-
thogonalization follows the signal statistics. The performance of
the resulting novel nonlinear structure is evaluated by experiments
using real hardware.

1. INTRODUCTION

In the acoustic echo cancellation problem, illustrated in Fig. 1, the
acoustic echo canceler (AEC) seeks to minimize contribution of
the echo signal r(k) to the power of the error signal e(n) by sub-
tracting an estimate of the echo signal y(n) from the microphone
signal d(n). The performance of standard approaches for the can-
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Fig. 1. General set-up of the acoustic echo cancellation problem.

cellation of acoustic echos in telecommunication systems strongly
depends on the assumption of a linear echo path. However, in ap-
plications such as echo cancellation for mobile communication re-
ceivers, non-negligible nonlinear distortion is introduced by loud-
speakers and their amplifiers [1] [2]. With these nonlinear distor-
tions, purely linear approaches are not able to provide a sufficient
echo attenuation, making nonlinear approaches desirable.

In this contribution we present power filters as a practical par-
allelized model of the nonlinear echo path that can be considered
as a memoryless saturation characteristic, approximating the non-
linear behaviour of loudspeaker and amplifier, followed by a linear
room impulse response. The mapping of such a cascaded nonlin-
ear structure to power filters is illustrated in Fig. 2, and is discussed
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in Section 2.1. In order to achieve a faster convergence of the

Fig. 2. Parallelized implementation of a memoryless nonlinearity
followed by a linear filter (right) with power filters (left).

adaptive implementation, an equivalent orthogonal structure is in-
troduced. Orthogonalized power filters in complex baseband rep-
resentation have already been applied in [3] for the predistortion
of nonlinear power amplifiers with memory. The orthogonalized
power filters presented in [3] are designed under the assumption
of stationary, uniformly distributed inputs. However, besides the
fact that the input signal distributions are in general not accessi-
ble in advance, the non-stationarity of the speech input has to be
taken into account when considering the echo cancellation appli-
cation. Therefore, the orthogonalization is performed in a time-
variant manner. Simulations based on real measured data con-
firm that a significant increase in echo attenuation can be achieved
with the proposed structure if the loudspeaker system introduces
saturation-type nonlinearities in the echo path.

2. POWER FILTERS

In this section we discuss a certain class of polynomial systems
with memory, i.e., the so-called power filters. A P-th order power
filter, depicted on the left hand side in Fig. 2, is defined by its
input/output relation as follows

Np—

P 1
y(e) =Y > hpaa(k—1). (1)
p=1 [=0

From (1) we notice that power filters can be considered as linear
multiple input/single output systems, where the input of the p-th
channel is given by the p-th power of z(k). The input of each chan-
nel is then filtered by an associated linear filter h,; with memory

ICASSP 2005



length N,,. For compactness, we write (1) in matrix notation:

P
y(k) = hyx,(k), 2)
p=1

with the vectors
xp(k) =
h, =

[z"(k), 2" (k — 1),..., 2P (k — N, + 1)]", (3)
[P0y hipts - .- 1F )
Note that the input signals of each channel are in general not mu-
tually orthogonal, i.e., E{z’(k)z’ (k)} # 0. Thus, a direct adap-

tive implementation of the non-orthogonalized power filter suffers
from slow convergence, as verified in Section 5.

) hPA,Np—l

2.1. Model of the nonlinear echo path

For modeling the echo path of mobile communication receivers,
mainly two sources of nonlinearities have to be considered. On the
one hand, amplifiers show a memoryless saturation characteristic,
e.g., due to low battery voltage [1], and, on the other hand, small
loudspeakers driven at high volume cause non-negligible nonlinear
distortion, too. While the nonlinear behaviour of common electro-
dynamic loudspeakers can be modeled by Volterra filters [4], i.e., a
nonlinearity with memory, miniaturized loudspeakers, e.g., used in
mobile phones, exhibit a saturation-type nonlinearity. As the prop-
agation path between loudspeaker and microphone, including the
microphone, can be modeled by a linear filter, the overall structure
of the echo path consists of the cascade of a memoryless nonlinear-
ity and a linear filter, as depicted on the right hand side of Fig. 2.
In the following we assume that the memoryless nonlinearity can
be approximated by a truncated Taylor series expansion, i.e., we
exclude nonlinearities such as hard-clipping characteristics. Then,
the output of the memoryless nonlinearity can be written as

s(k) = apa’(k), (5)

where a;, denotes the coefficients of the Taylor series expansion.
The output of the subsequent linear filter with coefficients g;, with
s(k) as input, reads

Ng—1

y(k) = > qis(k—1). 6)
1=0
Introducing (5) into (6), and reversing the order of the summation
yields the mapping of the cascaded structure to the parallel struc-
ture, illustrated in Fig. 2:

P Ng—l

y(k) =Y > apgir®(k —1). )

p=1 [=0

Comparing (7) and (1), the power filter model of the considered
cascaded structure is immediately obtained by equating

hp,l = apgi. (8)

Note, however, that the number of parameters is increased from
P + N, for the cascaded structure to PN, for the parallel struc-
ture. On the one hand, this increase of the number of parameters
may disqualify the parallelized implementation, but, on the other
hand, for an adaptive realization of cascaded structures, as pro-
posed in [1], [2], it is often challenging to assure convergence to
the optimum solution or even assure a stable adaptation behaviour.

3. ORTHOGONALIZATION OF THE INPUT SIGNALS

Referring to the multi-channel interpretation of power filters, we
recall that the input signals of the different channels, i.e., z(k),
z2(k), ..., P (k) are in general correlated. This implies that
the convergence speed of a respective adaptive implementation is
rather slow compared to a corresponding orthogonalized version.
Therefore, we introduce a new set of mutually orthogonal input
signals:

To1(k) = x(k), 9
p—1 ]
Top(k) = (k) + Y qpiz'(k), (10)
i=1
for 1 < p < P. The orthogonalization coefficients g, ; are chosen
such that
E{zo,i(k) zo,;(k)} =0, fori#j. (11

The orthogonalization coefficients g, ; can be determined using
the Gram-Schmidt orthogonalization method [5], i.e., the p — 1
coefficients g ; for the p-th order channel are obtained by solving

mg) e m&m dp,1 m;erl)
mép) o m&2p72) Qp,p—1 mfp’l)
12)
where m{") = E{z"(k)} denotes the n-th order moment of x (k).

Obviously, the orthogonalization coefficients g, ; are constant for

stationary input z (k). However, in practical implementations, m{™

has to be replaced by estimates mg") (k) that can be obtained, e.g.,

by a first order recursion according to
mM (k) = Al (k= 1) + (1= Na™ (k). (13)

The forgetting factor A can be adjusted in order to adapt the esti-
mation to the statistics of the excitation signal z(k). Obviously,
the orthogonalization coefficients gy ;(k), resulting from (12) by
replacing m{ by i (k), also depend on time. Analogously to
(3), we introduce the orthogonalized signal vectors

Xo,p(k) = [xo,p(k),. ..

where for presentational convenience N, = N, Vp, is assumed in
the following. Regarding (9), (10), the signal vectors (14) can be
expressed by

Xo,1(k)

s Top(k— Ny + D)7, (14)

x1(k), (15)
p—1

Xop(k) = Xp(k)‘f‘ZQp,i(k)Xi(k)a (16)
i=1

for1 < p < P. Here, Qp.:(k) represent the diagonal orthogonal-
ization matrices accounting for the time variance of the orthogo-
nalization coefficients gy ; (k):

Qp.i(k) = diag{lgp.i(k), ..., gpi(k =N+ 1]}. A7)

If z(k) is a white noise process, we obtain a orthogonality property
of the signal vectors X, (k) that corresponds to (11), i.e.,

E{xo,i(k)xo,j(k)T} —0, forij. (18)
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Note that (18) does in general not hold for correlated z(k), al-
though it can easily be verified that (18) is still valid for P = 3,
if z(k) is a zero-mean, correlated Gaussian process. For non-
Gaussian processes, (18) does not hold in theory, however, for
typical speech signals (k) it can be assumed to be approximately
fulfilled. To give an example, we consider the case that z(k) rep-
resents a zero-mean, first-order Laplacian Markov process with an
autocorrelation function 7 (n) = E{z(k)z(k —n)} = 0.9
In Fig. 3 the normalized crosscorrelation function

E{m(k‘ S(k—n)}
VE{z2(k)} E{a5(k)}

between x(k) and z*(k) is shown together with the normalized
crosscorrelation function

C13 (’I’L)

19

_ E{zo,1(k)zo3(k —n)}
\/E{m2 k)} E{z2,(k)}

between zo,1(k) = x(k) and x,,3(k) according to (10). From

(20)

Co,13

067

Zos| e,

~0.4

o3

202

=01
OW
60 40 20 : 20 40 60

So

Fig. 3. Normalized crosscorrelation functions ¢13(n) and ¢o,13(n)
between z(k), 2* (k) and z(k), xo,3(k), respectively.

Fig. 3 we conclude that (18) is also valid in this case. Thus, we
assume in the following that (18) at least approximately holds also
for speech signals z (k).

4. EQUIVALENT ORTHOGONALIZED STRUCTURE

In this section we discuss the so-called equivalent orthogonal struc-
ture (EOS) of the power filter which results from using the orthog-
onalized input signals instead of the original input signals of each
channel.

The output of the power filter according to (2) using the or-
thogonalized signal vectors can be expressed by

P

y(k) = hop(k) %0, (k). @1

p=1

Introducing the definition of the orthogonalized input vectors (15),
(16) into (21) leads to the EOS of the corresponding power filter.
It is straightforward to verify that the relation between the original
coefficients h;, and the filter coefficients h, ;, of the EOS is given
by

ho,r, = hp, (22)

P
hop(k) = hp— Z Qi p(k)hoi(k), (23)

i1=p+1

for 1 < p < P. Interestingly, (23) implies that for time varying
orthogonalization matrices Qs p(k), the coefficients of the EOS
h, (k) also have to be time-variant, although (or because) the
coefficients h,, may be constant in time.

4.1. Bias correction for time-variant orthogonalization

Next, we consider the influence of time-varying orthogonalization
matrices Q;,,(k) on the EOS. For the following discussion we
assume that the physical echo path to be modeled corresponds to
a P-th order power filter, where all linear filters ¢, have memory
length N. Using the notation of Fig. 1, the desired signal d(k) can
then be expressed by

»
= cpxp(k) +n(k), (24)

where n(k) denotes a distortion that is zero-mean and independent
of the input signal z(k). Replacing the input vectors x, (k) in (24)
by the orthogonalized input vectors X, (k), used for the computa-
tion of the output y(k) of the EOS of the echo canceller according
to (21), we obtain the EOS that corresponds to the original filter
coefficients ¢, (k) of the unknown echo path:

ZCOP

The Wiener solution for h, (k) can be found by applying the
so-called orthogonality theorem [6], i.e., for the optimum filter co-
efficients ho » (k) = ho,popt (),

E{e(k)xop(k)} |h =0 (26)

ho p,opt (k)

T Xop(k) + n(k). (25)

holds. With (18), and regardlng that E{n(k)x.,(k)} = O, it
follows from (26) that for white noise input, the optimum filter
coefficients of the EOS are given by

ho p.opt (k) = €o,p(K), 27

As it follows from (23), the coefficients ¢, (k) are time-varying
for p < P, even for time-invariant ¢, and, thus, the optimum
solution for h, (k) is also changing in time. In order to ac-
count for fluctuations of h, ,(k) due to time-varying orthogonal-
ization matrices Q;,p (k), it is important to readjust the filter coeffi-
cients h, , (k) after each change of the orthogonalization matrices
Q.,p(k). Regarding (22) and (23), it follows that a bias correc-
tion is only required for the channels of order p < P, and can be
performed, starting with p = P — 1, by recursively computing

h, p(k) =ho,(k—1)

£3 Quak— Dok 1) -

i=p+1

Qip(k)ho,i(K)], (28)

for 1 < p < P. The importance of the above bias correction is
pointed out by a simulation presented in Section 5.

4.2. Adaptation of the equivalent orthogonalized structure

Applying standard gradient descent techniques [6], it directly fol-
lows from (21) that the normalized least mean square (NLMS) up-
date of the coefficients of the EOS is given by

Xo,p(k)e(k)

hop(k+1) = hop(k) + ap Yo (k)T 0 ()’
o,p 0,p

(29)

11 - 107



35
30t
T st
20t
B 15t
B0 Af — OPF w1th BC 1
= |/ OPF wit l?
g 5H: not orthogona ized | A
0
5 i i i ‘ i i
0 0.5 1 1.5 2 25 3

time [s] —

Fig. 4. Comparison of different realizations of adaptive power fil-
ters for a nonlinear AEC scenario together with the input signal.

where the normalization of the step-size o, can be performed sep-
arately for each channel, as the input vectors X, (k) are mutually
orthogonal according to (18). Note, however, that the error intro-
duced by a misadjusted filter in the i-th channel of the EOS acts
as a distortion for the adaptation of the filters in the other channels
and vice versa, rendering control of the adaptation a crucial issue.
This topic is subject to current research and is not discussed here.
It should be emphasized that the update (29) is performed with re-
spect to the bias corrected filter coefficients h, ,(k), i.e., the bias
correction according to (28) is carried out first, and then the EOS
of the power filter is adapted subsequently by applying (29).

5. SIMULATION RESULTS

To evaluate the performance of the proposed adaptive orthogo-
nalized power filter, we present simulation results obtained for
nonlinear acoustic echo cancellation. In the first experiment, the
unknown echo path has been modeled by the cascade of a third-
order memoryless polynomial, followed by a linear filter of length
N = 200. The adaptive echo canceler has been realized as a third-
order power filter, where the memory length of each channel is also
N, = 200, for p € {1,2,3}. The forgetting factor for the recur-
sive estimation of the moments according to (13) has been chosen
to A = 0.97. The input signal has been a zero-mean, uncorrelated,
non-stationary Laplacian process [7], and a signal-to-noise ratio of
35 dB w.r.t n(k) has been preset. As evaluation criterion we use
the echo return loss enhancement (ERLE) defined as

ERLE =101 E{d2(k)} dB 30
The ERLE graphs that have been obtained for an orthogonalized
power filter (OPF) with bias correction (BC) according to (28), an
orthogonalized power filter without bias correction, and the cor-
responding non-orthogonalized power filter are shown in Fig. 4.
As can be seen from Fig. 4, the achievable echo attenuation of the
adaptive EOS without bias correction is limited due to time-variant
orthogonalization matrices. Furthermore, we notice that the EOS
with bias control and the non-orthogonalized power filter lead to
the same final echo attenuation, where the EOS provides a signif-
icantly faster convergence speed. The second experiment is based
on recorded speech data from a loudspeaker of a mobile phone
receiver placed in an enclosure with low-reverberation. For the
recording, the loudspeaker has been mounted in the handset, while
the microphone has been separated from it to avoid undesired vi-
bration effects. The parameters for the third-order power filter has
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Fig. 5. Comparison of the adaptive orthogonalized power filter
with bias correction and a linear AEC for recorded speech data.

been the same as for the previous experiment. The ERLE graphs
resulting from the proposed orthogonalized power filter with bias
correction and a linear echo canceller with filter length N = 200
are presented in Fig. 5. We notice that the nonlinear approach
leads to a significant increase in echo attenuation compared to
a linear echo canceller if the loudspeaker causes non-negligible
nonlinear distortion. Although not presented here, simulations in-
cluding nonlinear amplifiers yield similar results with respect to
performance improvement compared to a linear echo canceler.

6. CONCLUSION

We presented orthogonalized adaptive power filters including a
bias correction for time-variant orthogonalization of non-stationary
input signals. It has been shown that power filters are well suited
to model the nonlinear echo path of mobile communication re-
ceivers, i.e., the cascade of a memoryless saturation characteristic
followed by a linear filter. The simulation results confirm the ca-
pability of the proposed approach to cope with nonlinear distortion
in the echo path, introduced by nonlinear loudspeaker systems.
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