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ABSTRACT

This paper is concerned with the problem of localizing multiple
wideband acoustic sources. In contrast to existing techniques, this
method takes the physics of wave propagation into account. 2D
wave fields are decomposed using cylindrical harmonics as ba-
sis functions by a circular array mounted into a rigid cylindri-
cal baffle. The obtained wave field representation is then used to
serve as a basis for high-resolution subspace beamforming meth-
ods, most notably ESPRIT. It is shown that acoustic source lo-
calization based on wave field decomposition has the potential to
unambiguously localize multiple simultaneously active wideband
sources in the array’s full 360 degrees field-of-view.

1. INTRODUCTION

The problem of acoustic source localization has been an active
area of research for more than a decade (see [1], [2], and refer-
ences therein). Several applications depend on accurate position
estimates of one or several simultaneously active sound sources,
for example, tele-conferencing and surveillance systems.

Traditional sound source localization algorithms can be loosely
divided into two major categories. The first group of algorithms is
based on maximizing the output power of a steered beamformer.
The second set of algorithms comprises two steps: First, the time
delays of arrival (TDOA) between several microphone pairs are es-
timated. Second, these TDOAs are then used to estimate the source
position using the information on the geometry of the setup. Many
real-time systems based on these algorithms exist that prove satis-
factory estimation performance.

One of the major shortcomings of these algorithms is the fact
that the underlying signal model only allows a single sound source
to be active at any given time in space.

A group of algorithms that resolves the simultaneous multiple
source localization problem is based on high-resolution subspace
techniques, such as MUSIC [3] and ESPRIT [4]. These techniques
were originally developed for narrowband sources and were there-
fore not applicable to, e.g., speech signals. Although subspace
techniques that are applicable to wideband signals exist (e.g. [5]),
they do not seem to be considered as a viable alternative to the first
two groups of algorithms in applications dealing with speech sig-
nals. This is partly due to their computational complexity which
increases disproportionally with the number of microphones and
due to the prerequisite of initial source location estimates.

All of the above mentioned algorithms have in common that
they do not take the underlying physics of wave propagation in 2D

or 3D space into account. In this paper, the physics of wave prop-
agation in 2D space is considered for application to localization of
a single and multiple wideband acoustic sources. 2D wave fields
can be used as reasonable models for propagating acoustic sound
fields in closed rooms where ceiling and floor reflections are suf-
ficiently attenuated. A natural way of analyzing a 2D wave field
is to decompose it into an orthogonal set of eigenfunctions of the
acoustic wave equation in cylindrical coordinates, i.e. the cylindri-
cal harmonics. The decomposed wavefield, in this paper denoted
as ’eigen-space’ [6], can be used to serve as a basis for many
common subspace localization techniques, in particular ESPRIT.
This idea is in principle similar to the familiar beam-space tech-
niques which, before applying subspace localization algorithms,
form several beams pointing in different directions in space and
thus perform a reduction in computational complexity (see [7]).
The decomposition into cylindrical harmonics can be achieved by
utilizing circular microphone arrays that have the additional bene-
fit of a full 360 degree field-of-view.

In this paper, a circular microphone array mounted into a rigid
cylindrical baffle is examined. The decomposition is described in
Section 2, the eigen-beam ESPRIT (EB-ESPRIT) algorithm is pre-
sented in Section 3, and its performance is evaluated in Section 4.

2. CIRCULAR ARRAYS IN EIGEN-SPACE

Figure 1 depicts the geometric model under consideration where a
planar wave front impinges on a circular aperture of radius R that
is mounted into a rigid cylindrical baffle. Due to the fact that any
circular aperture has control only over the horizontal component
of a wave field, θi = π/2 is assumed throughout this paper.

The Fourier series expansion of a planar wave field due to a
single far-field source, expressed in polar coordinates, is

B(kr, φ) = ��
n= � �

jnAn(kr)ejnφ, (1)

where k = � � � is the wavenumber and j2 = � 1. Depending on
the applicable boundary conditions [8], it follows that

An(kr) =

	
 � Jn(kr), w/o baffle

Jn(kr) � J �n(kR)

H  (1)n (kR)
H(1)

n (kr), rigid cylinder

(2)

where Jn( � ) is the Bessel function of the first kind of order n and
H

(1)
n ( � ) is the n-th order Hankel function of the first kind. The
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Fig. 1. Geometric model

prime denotes the derivative with respect to the argument. By con-
sidering An(kr) = Jn(kr) � [Jn(kR) � H

(1)
n (kr)]/H

(1)
n (kR),

cylinders representing ’pressure-release’ boundaries [9] can also
be modeled.

If the circular aperture is not mounted into a cylindrical baffle
(1) evaluates to ejkr cos φ = � �n= � �

jnJn(kr)ejnφ, the standard
free-field expansion for plane waves [9].

The response of a circular aperture of r = R due to a single
plane wave impinging from angle φi can be written as,

F (k, φi) =
1

2π

2π�
0

��
n= � �

jnAn(kR)ejn(φ � φi)

� � � �
total wave field on aperture

�(k, R, φ)� � � �
aperture illum.

dφ.

(3)

The aperture illumination, �(R, k, φ), in general, can be regarded
as a frequency-dependent weighting function for an infinitesimal
segment, dφ, of the aperture. By choosing �(R, k, φ) = e � jmφ,
m � 	 , it can be shown that, by orthogonality of the exponential
functions, Eq. (3) reduces to

Fn(k, φi) = jn An(kR) e � jnφi . (4)

In other words, by simply applying a Fourier transform with re-
spect to φ to the response of a circular aperture one obtains the so-
called cylindrical harmonics as defined in (4). By utilizing the fast
Fourier transform (FFT), an efficient implementation of the de-
composition into cylindrical harmonics can be obtained. Multiple
incoming plane waves can be taken into account by superposition
of the respective individual harmonics.

Figure 2 shows the frequency-dependent component of the
cylindrical harmonics, i.e. An(kR). Both apertures exhibit a high-
pass character up to kR 
 1 with a slope of 6n dB/octave. The ad-
vantage of mounting a circular aperture into a rigid baffle now be-
comes clear. The zeros in the amplitude response of the individual
harmonics caused by the Bessel functions (left figure) are compen-
sated by the additional components present in the setup employing
the rigid cylindrical baffle (right figure). This fact makes this ar-
rangement useful for a wider frequency range.

Figure 3 shows the angular-dependent component of the cylin-
drical harmonics, i.e. e � jnφi . As can be seen, these harmonics
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Fig. 2. Frequency response (left: w/o baffle, right: rigid baffle)

correspond to multipoles, i.e. monopole, dipole, quadrupole, etc,
which are mutually orthogonal. As will be shown in Section 3,
these multipoles can be used instead of the individual microphone
responses for subspace-based wideband source localization.

Fig. 3. Angular response with respect to φ

So far, only circular apertures have been considered. For ac-
tual implementations, the aperture has to be sampled at discrete
points in space, i.e. microphones. Therefore (3) needs to be dis-
cretized to yield F̂n(k, φi). It can be shown that F̂n(k, φi) =
Fn(k, φi)+ � (na, k, φi), where � (na, k, φi) is an additional term
due to modal aliasing which basically results in several modes of
order na > n leaking into mode n. This error can be controlled,
although not eliminated, by appropriately choosing the number of
microphones M , the radius R, and the frequency range of opera-
tion. Further details can be found in [10].

3. ESPRIT ALGORITHM FOR SOURCE LOCALIZATION

In order to be able to apply the ESPRIT algorithm, in general, the
frequency-dependence of the individual harmonics must be com-
pensated, so that

Gn(k, φi) =
F̂n(k, φi)

jnAn(kR) � e � jnφi , (5)

where it is assumed that � (na, k, φi) is sufficiently small. Hence,
(5) can be represented by a frequency-independent quantity G̃n(φi).
It is further assumed that K sources impinge on the circular array.
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Therefore, the output at time t can be written as

� (t) = � � (t) + � (t), (6)

where � = [ � (φ1) � . . . � � (φK)] is a modal array matrix with
� (φi) = [G̃ � N (φi) . . . G̃N (φi)]

T and where the source vector
is defined as � (t) = [s1(t) . . . sK(t)]T . � (t) denotes the noise
vector at time t and ( � )T denotes transposition. N is the highest
mode of the decomposition to be taken into consideration, e.g. in
Figs. 2 and 3 it follows that N = 3. Therefore, a total of O =
2 � N+1 independent harmonics can be used for further processing.
It can be shown that, theoretically, it is then possible to localize
K = N sources.

The covariance matrix of the modal array response is
�

yy = E � � (t) � H(t) 	 , (7)

where E � � 	 denotes the expectation operator and ( � )H the Hermi-
tian operator. Assuming zero-mean spatially and temporally white
Gaussian noise, (7) can be expressed as

�
yy = � �

ss � H + σ2 � , (8)

where
�

ss is the signal covariance matrix, � denotes the iden-
tity matrix, and σ2 is the noise variance. It can be shown that the
eigenvectors of

�
yy , corresponding to the K largest eigenvalues,

form the signal subspace � S . These eigenvectors are linear com-
binations of the modal array vectors of � corresponding to the K
signal sources.

Now, the standard sensor-space ESPRIT [4] can be directly
applied to eigen-space after replacing the notion of an individual
microphone of a standard linear microphone array with an indi-
vidual harmonic of order n (see Fig. 4). It is assumed that the
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Fig. 4. Transition from sensor-space to eigen-space for N = 2
and ∆ = 1

first element in the original sensor-space (eigen-space) array is
the first element in the first subarray (sub-modal array) and that
the (∆ + 1)th element in the original array is the first element in
the second subarray. Note that ∆, therefore, does not correspond
to a physical shift in either array configuration. The motivation
for this transition can be justified by realizing that the modal ar-
ray matrix � is Vandermonde, just like the array matrix of a lin-
ear array. A significant difference, however, is the fact that � is
frequency-independent. This observation is the reason why no fo-
cusing matrices are needed for aligning the individual narrowband
signal subspaces of wideband signals.

Following the sensor-space ESPRIT algorithm [4], two subar-
rays of length M̂ and displacement ∆ � � , cf. Fig. 4, are chosen
whose subarray (sub-modal array) matrices satisfy the invariance
relation

� 2 = � 1Φ, (9)

where Φ = diag  e � j∆φ1 , . . . , e � j∆φK � and

� 1 = [ ˜�
s � 0] � � , � 2 = [0 � ˜�

s] � � . (10)

˜�
s is an M̂ � M̂ identity matrix and 0 is a M̂ � ∆ zero matrix

(e.g. 4 � 1 in Fig. 4). Since the columns of � span the signal
subspace, � S , it holds that

� S = � � , (11)

where � is a non-singular matrix. Therefore, the subspaces of the
two subarrays can be defined as

� S1 = � 1 � , (12)

� S2 = � 2 � = � 1Φ � . (13)

By combining (12) and (13) one obtains

� S2 = � S1Ψ, (14)

where Ψ = � � 1
Φ � . Ψ can then be obtained from (14) by ap-

plying a standard least-squares or total least-squares solver [11].
By realizing that the eigenvalues of Ψ are the diagonal elements
of Φ the locations of the sources can be estimated. Note that in a
real system all equalities in (11),(12), and (13) must be replaced by
approximate equalities since they must be estimated from the ob-
served covariance matrix, ˆ�

yy , which is subject to measurement
errors.

Note also, although not shown here, that for a single source an
algorithm can be formulated that does not require the frequency
compensation of (5). This fact has the advantage that uncorrelated
noise does not get amplified at low frequencies by lowpass-like
equalization filters exhibiting a slope of 6n dB/octave, cf. Fig 2.

4. EVALUATION

In order to show the ability of EB-ESPRIT to localize one and
two sources, two sets of performance evaluations were undertaken
with M = 10, N = 3, and K = 1, 2. The first set of evaluations
was based entirely on computer simulations, i.e. the microphone
array mounted into a cylindrical baffle can therefore be considered
as perfectly modeled. This set of evaluations is in the following
denoted as ’simulated’.

Fig. 5. Photograph of the ten-element microphone array system
with R = 0.04 m

For the second set of evaluations, denoted as ’measured’, an
actual circular microphone array (R = 0.04 m) comprising ten
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omnidirectional microphones mounted into a rigid cylindrical baf-
fle has been realized (see Fig. 5). Impulse responses from 48 loud-
speakers surrounding the microphone array at a distance of 1.5m
to each microphone were measured. The measurements were per-
formed in a room with T60 �

250 ms. All further processing was
done offline for the sake of clarity of presentation.

Figure 6 shows the performance of the system due to a four-
second signal segment that contains single male unreverberated
speech for kR � [0.22 . . . 2.2], which is equivalent to a frequency-
range of f � [300 . . . 3000]Hz. The evaluation involved the fol-
lowing steps. First the signal coming from φ0 = 35 � was divided
into data blocks of 100 ms length. Then each block of data was ei-
ther modified by additive noise, resulting in an SNR of 15 dB (sim-
ulated), or convolved with impulse responses from the respective
loudspeaker position to the individual microphones (measured).
This procedure was then repeated 11 times so that φ = φ0 + l � φa

where φa = 30 � and l = [1, . . . , 11]. The resulting position
estimates, φ̂, are shown in the respective superimposed plots of
Fig. 6. Although not immediately obvious from the figures, the
maximum variance was found to be less than 0.02 � (simulated)
and 0.9 � (measured), respectively.
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Fig. 6. Single plane wave (overlaid illustration, left: simulated,
right: measured)

Figure 7 shows the position estimates, φ̂ , for two simultane-
ously impinging wave fronts with φ = [15 � 80 � ] and signal pow-
ers of � 6 dB and 0 dB subject to an SNR of 15 dB, respectively.
Here, the frequency range was reduced to kR � [0.7 . . . 2.2] which
is equivalent to f � [1000 . . . 3000]Hz in order to to minimize the
effects introduced by the noise amplification properties of (5). In
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Fig. 7. Two plane waves (left: simulated, right: measured)

these experiments, uncorrelated white noise was chosen as the ex-
citation signals since the problem of how to reliably estimate the
number of active speech signals is yet unsolved. Note that in the
derivation of the EB-ESPRIT algorithm it was assumed that the
number of active sources, i.e. the number of principal eigenvectors
of the covariance matrix, is known. The results of the localization
algorithm in the right-hand side of Fig. 7 show an encouraging
maximum variance for the weaker source of 0.6 � .

The above derived EB-ESPRIT has been implemented as a
real-time demonstrator running at about 50% CPU usage of a dual-
processor Pentium4 1 GHz processor under the Linux operating
system. Thereby, employing the array shown in Fig. 5, the results
obtained through offline calculations have been verified under real
(non-stationary) conditions.

5. CONCLUSIONS

An eigen-space version of ESPRIT has been derived that is based
on the decomposition of a 2D wave field into an orthogonal set of
eigensolutions to the acoustic wave equation, i.e. the cylindrical
harmonics. These harmonics can be obtained by utilizing circu-
lar microphone arrays with or without mounting them into a rigid
cylindrical baffle. This formalism is applicable to 3D wave fields
as well. In this case, spherical microphone arrays are needed to
decompose the wave field into spherical harmonics [6]. Localiza-
tion will then also yield an estimate of the source’s elevation [12].
Future work will include a methodology for estimating the number
of active speech signals in a wave field.
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