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ABSTRACT

A new two-stage blind source separation (BSS) for convolutive
mixtures of speech is proposed, in which a Single-Input Multiple-
Output (SIMO)-model-based ICA (SIMO-ICA) and an adaptive
beamforming (ABF) are combined. SIMO-ICA can separate the
mixed signals, not into monaural source signals but into SIMO-
model-based signals from independent sources as they are at the
microphones. Thus, the separated signals of SIMO-ICA can main-
tain the spatial qualities of each sound source, and the directions-
of-arrival (DOAs) of the sources can be estimated after the sepa-
ration by SIMO-ICA. Owing to the attractive property, the super-
vised ABF can be applied to efficiently remove the residual in-
terference components after SIMO-ICA and the DOA estimation
procedures. The experimental results reveal that the separation
performance can be considerably improved by using the proposed
method. In addition, the proposed method outperforms the com-
bination of the conventional SIMO-output-type ICA and ABEF, as
well as both of the simple ICA and simple ABF.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed sig-
nals observed in each input channel. In recent works of BSS based
on independent component analysis (ICA), various methods have
been proposed for acoustic-sound separation [1, 2, 3, 4, 5]. The
separation performance of the conventional ICA is far from being
sufficient under highly reverberant conditions which often arise in
many practical audio applications. because too long separation fil-
ters is required but the unsupervised learning of the filter is not so
easy. Therefore, one possible improvement is to partly combine
ICA with another supervised signal enhancement technique, e.g.,
spectral subtraction [6]. However, in the traditional ICA frame-
work, each of the separated outputs is a monaural signal, and this
leads to the drawback that many kinds of superior multichannel
supervised techniques such as an adaptive beamforming (ABF) [7]
cannot be applied.

To solve the problem, we propose a novel two-stage BSS al-
gorithm. In this approach, the BSS problem is resolved into two
stages: (a) previously proposed blind separation technique using a
Single-Input Multiple-Output (SIMO)-model-based ICA (SIMO-
ICA) [8], and (b) the ABF in the supervised filtering framework.
Here the term “SIMO” represents the specific transmission system
in which the input is a single source signal and the outputs are its
transmitted signals observed at multiple microphones. SIMO-ICA
can separate the mixed signals, not into monaural source signals
but into SIMO-model-based signals from independent sources as
they are at the microphones. Thus, the separated signals of SIMO-

0-7803-8874-7/05/$20.00 ©2005 IEEE

III - 85

ICA can maintain the spatial qualities of each sound source, and
the DOA information of the sources can be estimated after the
separation by SIMO-ICA. Also, the most important and attrac-
tive property is that the residual components of the interference,
which are often staying in the output of SIMO-ICA as well as the
conventional ICA, maintain the distinct spatial distribution from
that of the target signal. Therefore, the supervised ABF can be
applied to efficiently remove the residual interference components
after SIMO-ICA and the DOA estimation procedures. The exper-
imental results reveal that the proposed method can successfully
achieve the BSS for speech mixtures even under a realistic rever-
berant condition.
2. MIXING PROCESS

In this study, a straight-line array is assumed. The number of
microphones is K and the number of multiple sound sources is
L. The coordinates of the elements are designated as xx (kK =
1,.--, K), and the directions of arrival of multiple signals are des-
ignated as 6; (I = 1, - - - , L). Hereafter, we deal with discrete time
series, and symbols ¢, n and d are used as the discrete time indexes.
Disregarding an additive background noise, we can express the ob-
served signals in which multiple source signals are mixed linearly

as No1

x(t) = a(n)s(t —n) = A(2)s(t), (1)

n=0

where s(t) = [s1(t), -, s (t)]" is the source signal vector, and
x(t) = [z1(t), -~ ,xx(t)]T is the observed signal vector. Also,
a(n) = [aki(n)]w is the mixing filter matrix with the length of
N, and A(z) = [Akz(z)}kz = [Zg;ol akl(n)zfn]kl is the z-
transform of a(n), where 271 is used as the unit-delay operator,
ie., z7"-x(t) = x(t—n), ar (n) is the impulse response between
the k-th microphone and the [-th sound source, and [X];; denotes
the matrix which includes the element X in the ¢-th row and the
7-th column. Hereafter, we only deal with the case of K = L in
this paper.

3. PROPOSED TWO-STAGE BSS ALGORITHM

3.1. Motivation and Strategy

In the previous research, SIMO-ICA has been proposed by Takatani
et al. [8], and they showed that SIMO-ICA can separate the mixed
signals into SIMO-model-based signals at the microphone points.
This finding has motivated us to combine the unsupervised adap-
tive filtering (SIMO-ICA) and the multichannel supervised adap-
tive filtering (ABF). That is, the following post-processing can be
applied after SIMO-ICA: (a) the DOA estimation of each sound
source, and (b) speech-break detection for the target signal. The
above-mentioned (a) and (b) can provide sufficient information
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Fig. 1. Input and output relations in the proposed two-stage BSS,
where K = L = 2.

for conducting the supervised adaptive filter learning in ABF. The
ABF which follows SIMO-ICA can remove the residual compo-
nent of the interference effectively. It is worth mentioning that the
proposed algorithm is still blind although the supervised filtering
is included in the second stage because the supervision for ABF is
given by SIMO-ICA automatically. The detailed process using the
proposed algorithm is as follows.

3.2. First Stage: SIMO-ICA for Source Separation

In this stage, SIMO-ICA [8] is conducted for extracting the SIMO-
model-based signals corresponding to each of sources. A brief ex-
planation of the SIMO-ICA is given in the following. The SIMO-
ICA consists of (L — 1) TDICA parts and a fidelity controller, and
each ICA runs in parallel under the fidelity control of the entire
separation system (see Fig. 1). The separated signals of the [-th
ICA(=1,---L—1)in SIMO-ICA are defined by

ICAL

Yacan(t) = 1 Ol = D waoan(ma(t —n), ()
n=0

where wcay(n) = [w (ICAZ)(n)] is the separation filter matrix

in the [-th ICA, and D is the length of the filter.
Regarding the fidelity controller, we calculate the following
signal vector ¥ oz, (t), in which the all elements are to be mu-

tually independent,
Z vacan(®. )

Hereafter, we regard ycar,)(t) as an output of a virtual “L-th”
ICA. The reason we use the word “virtual ” here is that the L-th
ICA does not have own separation filters unlike the other ICAs,
and yycar)(t) is subject to wcar(n) (I=1,---,L —1). By

transposing the second term (— >/ Yacan(t )) in the right-
hand side into the left-hand side, we can show that (3) means a con-
straint to force the sum of all ICAs’ output vectors Zle Yacan

() to be the sum of all SIMO components [>"r | Ax(2)si(t —
D/2)|ui(= a(t — D/2)).

If the independent sound sources are separated by (2), and si-
multaneously the signals obtained by (3) are also mutually inde-
pendent, then the output signals converge on unique solutions, up
to the permutation, as

Yacay () = diag [A(Z)PZT]PZS(t - D/2), C))

Yacar)(t) = x(t—-D/2)—

where P; (I = 1,---, L) are exclusively-selected permutation
matrices which satisfy "~ | P; = [1];;. Regarding a proof of
this, see [8]. Obviously the solutions given by (4) provide nec-
essary and sufficient SIMO components, Ay (z)s;(t — D/2), for
each [-th source. Thus, the separated signals of SIMO-ICA can
maintain the spatial qualities of each sound source.

In order to obtain (4), the natural gradient of Kullback-Leibler
divergence of (3) with respect to wcai) (n) should be added to
the existing TDICA-based iterative learning rule [3] of the separa-
tion filter in the I-th ICA (I = 1,--- ,L — 1). The new iterative
algorithm of the I-th ICA part (I = 1,--- ,L — 1) in SIMO-ICA

is given as
[7+1]
w(jICAl) (n)
D-1
= EICAZ) —a [off—diag { <‘P (yE]I]CAl) (t))
d=0

L-1

Z (ICAk)
k=1
et d>)T>t}
D, =, )
(15(d - 5) - Z w(ICAk)(d)> ) (5)

¢ (Wacan®) = [ ®)] (©)

k1

[4] T
y(JICAl)(t —n+d) >t} (ICAl)
D
2

— off-diag {< x(t —

D
(m(t —ntd-3) Z Yitcan
k=

where (-); denotes the time-averaging operator, « is the step-size
parameter, d(n) is a delta function, i.e., §(0) = 1 and é6(n) =
0 (n # 0), and ¢(-) is a sign function. Also, the initial values of
w(rcay) (n) for all I should be different.

3.3. Second Stage: Supervised Beamforming Using SIMO-
Model-Based Signals

Hereafter, we deal with the case of K =L =2.

3.3.1. DOA Estimation and Speech-Break Detection:

Both the DOA estimation and speech-break detection for target
signal are the indispensable pre-processing to perform the super-
vised adaptive beamforming. We propose a specific DOA esti-
mation method which utilizes the SIMO-model-based signals ob-
tained by SIMO-ICA. The output signals of SIMO-ICA contain
the spatial information of each source, i.e., we can use the SIMO-
model-based signals like dealing with multichannel signals ob-
served at the microphone array. This can be still possible even
if the SIMO-model-based separation is not completely but partly
achieved to some extent; e.g., indeed the SIMO-ICA could provide
the SNR improvement of more than 11 dB in our previous study.
In this proposed system, the DOA of the [-th source is simply esti-
mated on the basis of the phase difference among array signals in
each frequency band, and is given by

él (f) — <Sin_1 arg[YI(ICAl) (.f? t)/YQ(ICA2) (f? t)]:| > (7)

27 floy — x|t
0y(f) = <sin1

where Y;ICA” (f, ) is the time-frequency representation of y;,
( ), and c is the velocity of sound. The resultant (fullband) DOA
is obtained by averaging (7) or (8) within the spemﬁc frequency

27 flxr — x2lc™?t

arg[Yl(ICAQ)(f,t)/YQ(ICA”(f,t)]}> ®)

(ICAL)

range, e.g., f=1~4k Hz, and we designate them as 61 and 6.
Regarding the speech-break detection, the separated signals
after SIMO-ICA can be also used in which we check the absence or
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presence of the target speech signal with an appropriate threshold
in the waveform domain.

3.3.2. ABF for Reduction of Residual Interference:

ABF proposed by Frost [7] is applied to the separated SIMO-
model-based signals after SIMO-ICA and the DOA estimation.
First, consider an ABF for enhancing the first sound source s1 (),
where we obtain the array output by adding the weighted SIMO-
model-based signals at each element. The resultant output signal
of the ABF is described in the time-frequency domain as

gl(f7t) = g(f)o(f,t), ©)
a(f) = [a(f), e2(f)], (10)
o(f,t)y = [PV, (0], an

where S)(f,t) is the array output signal, o(f,¢) is the SIMO-
model-based signal vector in regard to s1 (), and g( f) is the weight
vector of element.

In the adaptive procedure, when the target signal is absent, the
weight vector of element g(f) is optimized so as to minimize the
array output powers of interference arriving from outside of the
look direction 6. This can be achieved by solving the following
constrained minimization problem:

ming(f)R(f)g(f)", subJect to g fag, (f (12)
_ )i
R(f) = < s’ (13)
A _  |explj2mfx1 sin(él)/c}
%oy () = pr[jQﬂ'fxg sin(é )/c}] ’ 14

where R(f) is the array correlation matrix, g(f)R(f)g(f)" is

equal to the array output power (|S1(f,t)| %), and the superscript

H denotes the Hermitian transposition. B is the set of the frame
numbers of speech-break, Also, a;, (f) is generally called the
steering vector.

The solution of the constrained minimization problem given
by (12) yields the optimal weight vector

(opt) [ oy _ ag, (HUR(f)™!
9 D= ARG ey ()

Using the ABF technique, we can realize the optimal directivity
patterns for each interference, and the residual component of the
interference can be reduced efficiently. For the second source, we
can reduce the residual component of the interference which stays

in Yl(ICAZ) (f,t) and YQ(ICAU (f,t) in the same manner.

15)

3.4. Discussion on Separability between SIMO-ICA and
Conventional SIMO-Output-Type Methods [1, 10, 11]

Note that there exists some alternative popular methods for ob-
taining the SIMO components in which the separated signals are
projected back on to the microphones. Hereafter we simply abbre-
viate this class of methods to “PB”.

The first example of PB is a method which utilizes the inverse
of W (z) (see, e.g., [1]). In this PB method, the following opera-
tion is performed: -1 L—1

U

yl(cl)(t) = {W(Z)71[07 ,O,yl(t),0,~~~
(det W (2)) ™ A - mi(t), (16)

where y;(t) is a separated monaural signal obtained in the ICA,
y,(cw (t) represents the I-th resultant SIMO signal which is projected
back onto the k-th microphone, {-}. denotes the k-th element of
the argument, and Ay; is a cofactor of the matrix W (z).

(a) Target éignal in PB

{ I (c) Target signal in SIMO-ICA ]

0 1 2 3 4 0 1 2 3 4

DOA [degree]

-(b) Intérferénce in PB

0 1 2 3 .4 0 1 2 3 4
Frequency [kHz]

Fig. 2. Examples of DOA estimation for target signal si(¢)
(6:=—30°) and residual interference in PB or SIMO-ICA.

The second example of PB is a “deflation-type method” (see,
e.g., [10, 11]). In this PB method, we extract a specific monaural
source signal y;(t), and then y;(¢) is projected back onto the k-th
microphone as follows:

v 1) =" (@@=, (u @), - w@. a7

These PB methods are simpler than SIMO-ICA. However, the
separability among the target signal and the residual interference
is lost because the projection operator, (det W (2)) ™' A, or
> (zR(ty (t)27”>t/<|yl(t)|2>t, is applied to not only the tar-
get signal component but also the interference component in y; (),
as shown in (16) and (17). In other words, the spatial information
in the target signal is just similar to that in the interference, and this
fact yields the negative result that the PB is not available for combi-
nation of SIMO-model-based signals and adaptive beamforming.
In contrast to PB, SIMO-ICA holds the separability because the
separation filter of SIMO-ICA cannot be always represented in the
PB-form. This will be explicitly shown in Section 4.

4. EXPERIMENT UNDER REVERBERANT CONDITION

4.1. Conditions for Experiment

A two-element array with an interelement spacing of 4 cm is as-
sumed. The speech signals are assumed to arrive from two direc-
tions, —30° and 40°. The distance between the microphone array
and the loudspeakers is 1.15 m. Two kinds of sentences spoken by
two male and two female speakers are used as the source speech
samples. Using these sentences, we obtain 12 combinations. The
sampling frequency is 8 kHz and the length of speech is limited
to 3.6 seconds. To simulate the convolutive mixtures, the source
signals are convolved with the impulse responses recorded in the
experimental room which has a reverberation time (RT) of 300 ms.
The length of the separation filter is set to be 2048. The initial
value in SIMO-ICA is generated by frequency-domain ICA [4, 9].
Noise reduction rate (NRR) [5], defined as the output signal-to-
noise ratio (SNR) in dB minus the input SNR in dB, is used as
the objective indication of separation performance. The SNRs are
calculated under the assumption that the speech signal of the un-
desired speaker is regarded as noise.

4.2. Results

To explicitly visualize the separability, we depict the example of
DOA-estimation results for the target signal component (s1(t);

61=—30°) and the residual interference in PB (y§1 (t) and y(l)( t))
or SIMO-ICA (y{"®*V(¢) and y{"“*? (¢)). Figures 2 (a) and (b)
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Fig. 3. Result of NRR for different speaker combinations.

illustrate the DOAs in the conventional PB [1]. From the results,
we can confirm that the DOA information in (a) and (b) are the
same, and consequently there is no separability in PB. On the other
hand, Figures 2 (c) and (d) show the DOA-estimation results in the
SIMO-ICA of the proposed method. The DOAs of the interfer-
ence, (d), are distinctly scattered from those of the target signal,
(c), i.e., SIMO-model-based signals outputted by SIMO-ICA have
the possibility to be used as the inputs for ABF.

At first, proposed two-stage BSS (“Proposed Method”) are
compared with the combination method of the conventional PB [1]
and ABF (“ICA-PB-ABF”). As the conventional simple ICA, we
select Multistage ICA (“ICA”) proposed by Nishikawa [4]. Fig-
ure 3 shows the result of NRR for different speaker combinations.
From the results, we can confirm that the proposed ABF which
follows SIMO-ICA can remarkably and consistently improve the
separation performance. This fact is a promising evidence on the
feasibility of the proposed combination technique of SIMO-ICA
and ABF. On the contrary, the ABF which follows conventional
PB [1] could not contribute to the improvement of NRR. These
results are well consistent with the discussion on the separability
provided in Section 3.4. From the above-mentioned discussion
about separability and the result, we can conclude following.

e As far as we know, all of the existing ICA methods for ob-
taining the SIMO components are based on the PB oper-
ation, except SIMO-ICA. Thus, any combinations of the
conventional ICA and ABF are not valid for improvement
of the separation performance.

e Only the specific combination of SIMO-ICA and ABEF is
valid owing to the separability between the target compo-
nent and the residual component of the interference.

Secondly, we also compared the separation performance of the
proposed method with those of many kinds of conventional BSS
methods. As the conventional method based on ICA, we compared
proposed method with the second-order-based ICA proposed by
Parra (“2nd-Order ICA”) [2], Infomax-type higher-order-based
frequency-domain ICA proposed by Murata (“Higher-Order ICA”)
[1], and Nishikawa’s Multistage ICA (“MSICA”) [4]. The other is
an ABF (“ICA-Supervised ABF”). In General, the conventional
ABF is directly applied to the observed signal, i.e., the input sig-
nal of ABF o(f, t) in section 3.3.2 is replaced with X (f, t) which
is time-frequency representation of @ (¢). The conventional ABF
requires the two kind of supervisions; DOA and the speech-break-
segments of the target signal. We carried out the experiments for
ABF with the supervisions which are estimated by SIMO-ICA.
Figure 4 shows the Average of NRRs for 12 speaker combinations.
From the result, we can confirm that proposed method overtakes
all of methods in separation performance.

5. CONCLUSION
We proposed a new BSS framework in which the SIMO-model-

based ICA and the multichannel supervised adaptive filtering (ABF)
are efficiently combined. In order to evaluate its effectiveness, a

Proposed  2nd-Order Higher-Order MSICA ICA-Supervised
Method ICA[2] ICA[1] [4] ABF

Fig. 4. Comparison to conventional methods

separation experiment was carried out under a reverberant con-
dition. The experimental results revealed that the NRR can be
considerably improved by using the proposed two-stage BSS al-
gorithm. In addition, we could find the fact that the proposed
method outperforms the combination of the conventional SIMO-
output-type ICA and ABF as well as the simple SIMO-ICA.
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