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ABSTRACT

Musical noise is a typical problem with blind source sepa-
ration using a time-frequency mask. In this paper, we report
that a fine-shift and overlap-add method reduces the mu-
sical noise without degrading the separation performance.
The effectiveness was confirmed by results of a the listen-
ing test undertaken in a room with a reverberation time of
RT60 =130 ms.

1. INTRODUCTION

In this paper, we consider the blind source separation (BSS)
of speech signals realized by utilizing a time-frequency mask.
The time-frequency mask is widely used especially to solve
the underdetermined BSS problem where N source signals
outnumber M sensors. We can extract/separate signals by
using the time-frequency mask; however musical noise caused
by the mask is a typical problem.

Several methods have been proposed for underdetermined
BSS (e.g., [1–4]), and they rely on the sparseness of the
source signals. In [1], the authors employ a time-frequency
binary mask to extract each signal from the mixtures. The
use of binary masks causes too much discontinuous zero-
padding to the extracted signals, and they contain loud mu-
sical noise.

The authors of [2] also define a time-frequency binary
mask by employing the ratio between an observation and
the output of an adaptive beamformer, which reduces the
target signal. Then they extract the target signal with this
time-frequency binary mask. In a previous work [3], we
used a time-frequency binary mask to remove the N − M
signals from the observations. We then separated the ex-
tracted mixtures by independent component analysis (ICA).
Moreover, an ML estimation based ICA method has been
widely studied recently (e.g.,[4–6]), where the sources are
estimated after mixing matrix estimation with the l1-norm
minimization approach.

With these approaches [2–6], there is less zero-padding
to the extracted signals than with the binary mask only ap-
proach [1]. However, with the N − M source removal
method [3] and with the l1-norm approach [4–6], the N−M
components still become zero at each time-frequency point.
Therefore, we still hear musical noise in their outputs.

Musical noise has been widely considered in the field of
single channel speech enhancement with spectral subtrac-
tion (e.g.,[7, 8]). It is said that musical noise is heard when
an output has isolated peaks and/or short ridges in its spec-
trogram [8]. In underdetermined BSS, we should also con-
sider the musical noise problem because source separation
with a time-frequency mask is also a sort of speech enhance-
ment. In this paper, we report that musical noise is reduced
by a fine-shift and overlap-add method. By using the fine-
shift and overlap-add method, we attempt to obtain a grad-
ual change of the spectrogram and reduce musical noise.
The effectiveness was confirmed by undertaking a listening
test in a room with a reverberation time of RT60 =130 ms.

2. UNDERDETERMINED BSS

2.1. Formulation

In real environments, N source signals si observed by M
sensors are modeled as convolutive mixtures

xj(n) =
N∑

i=1

L∑
l=1

hji(l)si(n − l + 1) (j = 1, · · · , M),

where hji is the L-taps impulse response from a source i to
a sensor j. The goal of underdetermined BSS (N > M )
is to obtain separated signals yk(n) (k = 1, · · · , N) using
only the information provided by observations x j(n). In
the underdetermined scenario, sources are assumed to have
a sparse distribution.

This paper employs a time-frequency domain approach
because speech signals are sparser in the time-frequency do-
main than in the time domain [5] and convolutive mixture
problems can be converted into instantaneous mixture prob-
lems at each frequency. In the time-frequency domain, ob-
served signals are modeled as

Xj(f, m) =
N∑

i=1

Hji(f)Si(f, m) (j = 1, · · · , M),

where Hji(f) is a transfer function from a source i to a
sensor j, Si(f, m) and Xj(f, m) denote short-time Fourier
transformed sources and observed signals, respectively. f
is the frequency and m is the time-dependence of the short-
time Fourier transformation (STFT).
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Fig. 1. Example histogram. Male-male-female combination with
STFT frame size T = 512. RT60 = 0 ms.

2.2. Time-frequency mask estimation

Although the fine-shift and overlap-add method should be
valid for various approaches [1–6], here we utilize a basic
binary mask method such as that described in [1].

First, time domain signals xj(n) are converted into the
time-frequency domain with a T -point STFT:

Xj(f, m) =
T−1∑
r=0

w(r)xj (r + mR)e−j2πfr (1)

where f = (0, 1
T fs, · · · , T−1

T fs), fs is a sampling frequency,
w(r) is a window and R is the window shift size. Here, we
use a shift of R = T/S where S is the shift rate.

Then a time-frequency mask is estimated using the sparse-
ness of sources. When signals are sufficiently sparse, we
can assume that sources do not overlap very often. There-
fore, we can classify the observation sample points Xj(f, m),
and extract each signal with the time-frequency mask. To
classify the observations, we use the estimated direction of
arrival (DOA) θ(f, m) = cos−1 ϕ(f,m)c

2πfd where ϕ(f, m) =
� Xi(f,m)

Xj(f,m) (i �= j) is the phase difference between two ob-
servations, d is the microphone space, and c is the speed of
sound. The DOA histogram has N clusters (Fig. 1) and each
cluster corresponds to one source. Using the average DOAs
of these clusters θ̃1, θ̃2, · · · , θ̃N , we define a time-frequency
binary mask

Mk(f, m) =

{
1 θ̃k − ∆ ≤ θ(f, m) ≤ θ̃k + ∆
0 otherwise

(2)

which extracts the estimated signal of Sk(f, m). In the
equation, ∆ is an extraction range parameter and here we
use the standard deviation σk of cluster k for this parameter.

2.3. Output reconstruction with overlap-add method

Next with the time-frequency mask (2), we obtain the output
signal Yk(f, m) = Mk(f, m)Xj(f, m)(j ∈ {1, · · · , M})
at each time-frequency point.

Finally, the output signals in the time domain are recon-
structed using the overlap-add method,

yk(n) =
1
C

S−1∑
l=0

ym+l
k (n) (3)
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Fig. 2. Examples of overlapped time-frequency mask. (a)S = 2,
(b)S = 8. T = 512.

where C is a constant that is decided by the window w(n)
and the shift rate S,

ym
k (n) =

⎧⎨
⎩

w(n − mR)y(n) =
∑

f Y (f, m)ej2πfr

(mR ≤ n ≤ mR + T − 1)
0 (otherwise),

and r = n−mR. We should utilize an appropriate window
w(n) for the overlap-add. That is, the window should sat-
isfy the condition that the sum of all the windows in ym

k (n)
should be 1:

∑S−1
l=0 w(n − (m + l)R) = 1. Here we utilize

the hanning window w(n) = 0.5 − 0.5 ∗ cos( 2πn
T ), (n =

0, · · · , T − 1) and C = 0.5S, which fulfill the condition.

3. PROPOSAL: UTILIZING A FINE-SHIFT

3.1. Fine-Shift

In (1), a half shift R = T/2 (S=2) is usually used. However,
we can also use a smaller shift R = T/S (S > 2). In this
paper, we use a smaller shift, i.e., a fine-shift for the whole
process (Secs. 2.2 and 2.3), to see how it affects musical
noise.

From (3), we can see that the output signal y is obtained
as the sum of S frames. When we use a fine-shift S >
2, the output signal is averaged over S frames and can be
smoothed. Therefore, we can expect smoothed outputs, i.e.,
less musical noise.

3.2. Effect of fine-shift and overlap-add

At each frequency f , the time-frequency mask M(f, m) ex-
tracts a signal of duration T (mR ≤ n ≤ mR + T − 1) and
the extracted signals are overlapped according to (3). In or-
der to see what happens in each frequency, we look at an
overlapped time-frequency mask in this section. Figure 2
shows an example of an overlapped time-frequency mask

Mf (n) =
1
S

� n
R�∑

m = �n−T+1
R �

M(f, m) (4)

at a frequency of 1078 Hz.
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Fig. 3. Room for reverberant tests. RT60 = 130 ms.

One shift length is R = T/S = 32 ms for S = 2 and
8 ms for S = 8, because we used T = 512 at a sampling
frequency fs = 8 kHz. When S = 2 we observe gaps of
32 ms [(A) and (C) in Fig. 2]. Our auditory system can rec-
ognize a gap of over around 22 ms for the sound at 500 Hz
[9]. Therefore, we think that these gaps can be recognized
as musical noise. However, when S = 8, the gap length is
8 ms [(B) in Fig. 2], and so the gap cannot be recognized.
Moreover, at (D) in Fig. 2, the overlapped mask does not
become zero, and its value changes gradually around (D).
We believe this is why we can reduce musical noise with
the fine-shift.

Moreover, the magnitude of one step is 0.125 when S =
8, and 0.5 when S = 2 (This is always true because M(f, m)
∈ {1, 0}). That is, we rarely have a sudden change of mask
level when S = 8 and therefore we rarely have isolated
peaks and/or short ridges in the output spectrogram. This is
also one of the reasons for the musical noise being reduced
by the fine-shift.

4. EXPERIMENTS

4.1. Experimental conditions
We evaluated the separation performance in anechoic tests
and reverberant tests. For the anechoic tests (RT60 = 0 ms),
we mixed speech signals using the transfer function H ji(f) =
exp (j2πfτji), where τji = dj

c cos θi, dj is the position
of the j-th microphone, c is the speed of sound, and θ i is
the direction of the i-th source. The source directions were
45◦, 90◦ and 135◦. For the reverberant tests, the speech
data were convolved with impulse responses recorded in
the room illustrated in Fig. 3 whose reverberation time was
RT60 = 130 ms. As the original speech, we used Japanese
sentences of around 7 seconds in length spoken by male
and female speakers. We investigated three combinations
of speakers and averaged the results.

The STFT frame size T was 512 at a sampling rate of
8 kHz. We changed the frame shift from 64(= T/8) to
256(= T/2) .

4.2. Performance measures

We used the signal to interference ratio (SIR) and the signal
to distortion ratio (SDR) as measures of separation perfor-

Table 1. Results for RT60

=0 ms. S: shift rate
S SIR SDR MOS
2 17.0 7.9 1.9
4 18.3 8.7 2.8
8 18.7 9.0 3.3

Table 2. Results for RT60

=130 ms. S: shift rate
S SIR SDR MOS
2 12.2 6.4 1.6
4 13.8 7.4 2.5
8 14.3 7.7 3.1

mance and sound quality, respectively:

SIRi = 10 log
∑

n
y2

isi
(n)∑

n
(
∑

i�=j
yisj

(n))2
,

SDRi = 10 log
∑

n
x2

ksi
(n)∑

n
(xksi

(n)−αyisi
(n−D))2

,

where yi is an estimation of si, and yisj is the output of the
whole separating system at yi when only sj is active, and
xksi = hki ∗ si (∗ is a convolution operator). α and D are
parameters used to compensate for the amplitude and phase
difference between xksi and yisi .

Since SDR cannot evaluate musical noise [7], we also
conducted a subjective test and obtained the mean opinion
score (MOS). The listening tests were undertaken with 20
listeners. Each listener was asked about the audibility of
musical noise, and they awarded a score from one (clearly
audible) to five (not audible) for each output signal.

The SIR and SDR values and the MOSs were averaged
over three speaker combinations.

4.3. Experimental results

Tables 1 and 2 show the SIR and SDR results when we
changed the shift rate S. We can see that the SDR values
increase without any reduction in the SIR values. Note that
the SIR values are not reduced by the fine-shift.

Moreover, Tables 1 and 2 also show the MOS. An anal-
ysis of variance confirmed that there were significant dif-
ferences among the MOS for each shift rate (F (2, 537) =
160.8, p < .0001 when RT60=0 ms and F (2, 537) = 136.1,
p < .0001 when RT60=130 ms). Our subjective test con-
firmed that the fine-shift reduced the audible musical noise.

We also confirmed that the fine-shift is effective for re-
ducing musical noise when with Roman’s method [2] and
Araki’s method [3]. Some sound examples can be found at
[10].

5. DISCUSSIONS

We can reduce musical noise by using a fine-shift. This is
because output signals are averaged over S frames. Figure
4 shows spectrograms for S = 2 and S = 8. We can see
the isolated peaks and ridges when S = 2. By contrast, the
isolated components are smoothed when S = 8.

Figure 5 shows examples of smoothed signals at a fre-
quency of 1078 Hz. ’org’ and ’shift2’ and ’shift8’ show the
amplitudes of the original signal, and the outputs |Y (f, m)|
when S = 2 and S = 8, respectively. The plot labeled
’LPF(butt)’ is the amplitude of Y (f, m) filtered with a low
pass filter (Butterworth filter) when S = 2. Although we
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Fig. 4. Example spectrograms. Left: S = 2, right: S = 8.

expected the smoothing effect with LPF, there was an inap-
propriate increase in the output signal.

’smooth2’ and ’smooth4’ are the amplitudes of the aver-
aged waveforms of Y (f, m) when S = 2, that is, Y (f, m) ←
1
K

∑K−1
l=0 Y (f, m−l) and K = 2 for ’smooth2’ and K = 4

for ’smooth4’. The smoothed waveforms have smaller am-
plitudes than the ’shift2’, and the waveform has changed in
’smooth4’. This is because the speech signal is very sparse
at each frequency, making this smoothing unsuitable. More-
over, with ’smooth2’ and ’smooth4’, the output Y (f, m) is
averaged at a two-times over-sampling rate of T/S (S = 2).
This is different from the sum of (3) when S = 4 (’shift4’)
or S = 8 (’shift8’), that is, four-times or eight-times over-
sampling.

We may also be able to use a temporally smoothed time-
frequency mask M(f, m), which we can obtain, for exam-
ple, by shading a binary mask. However, we may pick up
interference at such shaded time-frequency points. There-
fore, the SIR values may decrease. By contrast, the overlap-
add with the fine-shift method estimates the time-frequency
mask M(f, m) at each (over-sampled) time point m so that
only one signal is picked up. Therefore, the fine-shift does
not affect the SIR values.

Note that the fine-shift increases the calculation cost be-
cause the fine-shift is the same as over-sampling. We should
select the shift rate S according to the application.

6. CONCLUSION

We evaluated the effectiveness with which a fine-shift re-
duces musical noise, which is a problem in the underde-
termined BSS. The fine-shift and overlap-add method re-
duces musical noise effectively without destroying the sepa-
ration performance. We have already proposed using a spa-
tially continuous mask [11] to reduce musical noise. The
fine-shift and overlap-add method realizes a temporally rel-
atively continuous mask. Therefore, we expect that we can
reduce musical noise more effectively by using a mask that
is both spatially and temporally continuous.
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Fig. 5. Signal example at a frequency (1078Hz). ’org’:original,
’shift2’:S = 2, ’shift8’:S = 8, ’LPF(butt)’:signal filtered by But-
terworth filter, ’smooth2’ and ’smooth4’: average for 2 or 4 sample
points respectively.
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