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ABSTRACT

This paper introduces a new scheme which combines the popular
blind signal separation (BSS) and a post-processor to jointly sup-
press noise and acoustic echo. The new L element structure uses
the BSS as a front-end processor to spatially extract the target sig-
nal from the interference (noise and echo). Statistical measures are
then employed to select the target signal dominant signal from the
BSS outputs. The remaining L − 1 BSS outputs (noise and echo
dominant) and the existing far-end line echo are then used as the
reference signals in an adaptive noise canceller (ANC) to tempo-
rally enhance the target signal. The novel structure bypasses the
need for any a priori information whilst compensating the separa-
tion quality of the BSS temporally. Real room evaluations demon-
strate the efficacy of the scheme in both noisy double-talk and non
double-talk situation.

1. INTRODUCTION

Fundamentally, there are three important tasks to fulfill in hands-
free communications systems, namely, noise suppression, room
reverberation suppression and acoustic echo cancellation of the
hands-free loudspeaker. Indeed, the challenge to achieve all of the
mentioned tasks is evident from the fact that each of the criteria is
an intensive research area itself. For instance, noise suppression
techniques have been widely studied over the years, ranging from
the single channel method to the more popular multichannel solu-
tions [1]. The popularity of the multichannel systems is attributed
to the additional dimension called spatial diversity which can be
steered by electronic means [1]. In other words, given the loca-
tion of the target signal, a small number of microphones can be
arranged in space such that it spatially allows the target signal to
be passed whilst rejecting sources from other directions.

Nevertheless, beamforming based methods require a priori
knowledge about the array geometry and the source location. A
promising alternative to beamforming is blind signal separation
(BSS) [2]. With BSS, all the a priori information needed by con-
ventional beamforming is not required at all. A direct consequence
of that is the uncoupling of the disastrous steering vector errors
(parametric to non-parametric). Here, the BSS attempts to re-
cover the unobserved sources from several observed mixtures by
using independence as the adaptation criteria. In speech enhance-
ment, however, there is usually only one source of interest in a
noisy (or multiple noise sources) environment. Under such under-
determined (more sources than sensors) situation, standard BSS
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may not perform satisfactorily and there is no information as to
which BSS outputs is the desired signal.

This paper targets the mentioned problems by introducing a new
scheme which incorporates the BSS and the suppression capabil-
ity of an adaptive noise canceller (ANC) into an efficient speech
enhancement scheme. Unlike standard BSS techniques, this struc-
ture recovers/enhances a specific speech signal (even under the in-
fluence of the hands-free loudspeaker) that is spatially closest to
the array. In an effort to address the problems of acoustic feedback
in hands-free communication systems, an acoustic echo canceller
is also embedded in the novel structure. Since the overall structure
is “blind” in nature, the proposed scheme can handle double-talk
situation just like the BSS. In summary, the new structure has the
following features,

• no array geometry and source localisation,

• no voice activity detector (VAD),

• no assumptions about the cumulative densities of the signals,

• handles double-talk situation and performs joint noise and
acoustic echo cancellation.

Evaluations in a real room hands-free situation show that the struc-
ture is capable in both noisy non double-talk and double talk sce-
narios with noise and echo suppressions up to 20 dB.

2. THE PROPOSED STRUCTURE

2.1. Overview
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Fig. 1. The proposed joint noise and acoustic echo cancellation
processor with L microphones.

Figure 1 shows the block diagram of the proposed structure.
Essentially, the BSS acts as a front-end processor to separate the
target signal from the interference (e.g. acoustic echo, ambient
noise or babble) using the L observations. There is, however, a
fundamental limitation in the separation quality of the BSS. This
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is due to the multipath/reverberant environment [3] and the under-
determined situation in the real world. A straightforward way to
overcome this limitation is to employ post-processing [4, 5]. In
this paper, we use an ANC to refine the desired output and extend
it to jointly perform acoustic echo cancellation. Also, a statisti-
cal measure is incorporated in the system to provide additional
information for the BSS to distinguish the target signal from its L
outputs.

Consider a hands-free scenario whereby the target signal is un-
der the influence of both the noise and acoustic echo. Assuming
that the BSS algorithm converges, the separation process will yield
two speech dominant outputs i.e. target signal and far-end feed-
back (the remaining L−2 are noise dominant output(s), assuming
L ≥ 3). Following that, the BSS outputs are then ranked accord-
ing to their respective kurtosis values (speech signals have higher
kurtosis value than noise). With this in mind, the top two ranked
outputs will therefore be the target dominant and the echo domi-
nant signals. The coherence of both the signals are then computed
against the far-end line echo to ascertain which is the target signal
dominant output. Naturally, the echo dominant signal will be more
coherent to the line echo compared to the target signal dominant.
Thus, the signal which yields lower coherence will be the speech
dominant signal. Finally, all of the other L − 1 BSS outputs and
the far-end line echo itself will serve as the references for the ANC
(see Figure 1).

The motivation for the ANC stage comes from the fact that
temporal diversity is not fully exploited by the BSS [5]. Having
said so, the ANC will further enhance the speech dominant output
by cancelling components that are temporally correlated with its
references. Further, the additional reference provided by the far-
end line echo will provide extra temporal diversity for the ANC
to efficiently cancel the remaining far-end echo. In other words,
the post-processing stage (ANC) effectively compensates for the
residue noise as well as the acoustic echo in the BSS target sig-
nal dominant output. The new structure solves the BSS outputs
indeterminacy (given L BSS outputs, which is the desired one?)
and effectively transforms BSS into “hands-free systems compli-
ant” by selectively enhancing only the desired signal through the
ANC post-processing.

2.2. Blind Signal Separation (BSS)

Let us consider a convolutive mixture of N sources (where L ≥
N ), the observed signal vector x(t) = [x1(t), · · · , xL(t)]T , at
each of the sensors is

x(t) =

P−1∑
p=0

G(p)s(t − p) (1)

where s(t) = [s1(t), · · · , sN (t)]T is the N -source vector, G(p)
is a L×N mixing matrix, P is the length of the impulse response
from the nth source to the lth sensor and (·)T denotes transposi-
tion. The task at hand is to find an unmixing matrix W(p) (N×L)
of length P to recover the sources (up to an arbitrary scaling and
permutation) using only the observed L mixtures.

One way to solve the problem is to perform the separation in
the frequency domain [3]. By doing so, the problem becomes an
instantaneous mixture for each of the frequency bin. The time
domain received data x(t) can be transformed into the frequency
domain by using a Ω-point windowed DFT and assuming that
Ω � P , a linear convolution can be approximated by a circular
convolution [6]. Therefore Eqn. (1) can be rewritten in the fre-
quency domain as

x(ω, k) = H(ω)s(ω, k), (2)

where x(ω, k), H(ω) and s(ω, k) are the transformed representa-
tions of the observations, mixing matrix and source signals respec-
tively. The unmixing model can be written as

y(ω, k) = W(ω)x(ω, k), (3)

where y(ω, k) is the frequency representations of the estimated
source signals vector up to a scaling and permutation ambiguities.
Here, the unmixing matrix W(ω) is determined such that the ele-
ments in the estimated sources y(ω, k) are as statistically indepen-
dent from each other as possible. There are largely two types of
BSS approaches namely, second order based BSS [6] and higher
order [2]. In this paper, we choose to employ the second order
decorrelation by exploiting the non-stationarity of the signals.

As explained in [6], diagonalization of single time cross cor-
relation is insufficient to solve for W(ω). However, with non-
stationarity, additional information can be obtained at separated
time intervals. To achieve that, the covariance matrix Rx(ω, m)
of the received data can be estimated for the M number of intervals
as

Rx(ω, m) =
1

K

K−1∑
k=0

x(ω, mK + k)xH(ω, mK + k), (4)

where m = 0, · · · , M − 1, k is the index for the intervals to
estimate the cross covariance matrix and (·)H denotes Hermitian
transposition. The achieve separation, the M number of covari-
ance matrices in Eqn. (4) are diagonalized as,

Λs(ω, m) = W(ω)[Rx(ω, m)]WH(ω). (5)

Following the approach in [6], the solution to Eqn. (5) can be
obtained by using a least squares estimate as

Ŵ(ω) = arg min
W(ω)

M−1∑
m=0

‖ E(ω, m) ‖2
F , (6)

where ‖ ·‖2
F is the squared Frobenius norm and the error function

is E(ω, m) = W(ω)[Rx(ω, m)]WH(ω) − Λs(ω, m).
The least squares solution in Eqn. (6) can be found by using the

gradient descent algorithm as follows, W(n+1)(ω)

= W(n)(ω) − µ(ω)
∂

∂W(n)∗(ω)

{
M−1∑
m=0

‖ E(n)(ω, m) ‖2
F

}

(7)
where (·)∗ is the conjugation operator and µ(ω) is the step
size. However, the estimation of the frequency domain unmixing
weights W(ω), leads to arbitrary permutation of each frequency
bin. One way to solve this problem is to impose a constraint on
the time-domain filter size of the unmixing weights, D such that
W(τ) = 0, τ > D � Ω. As demonstrated in [6], the constraint
couples the otherwise independent frequencies, which provides a
continuity of the spectra, hence effectively solving the permutation
problem.

2.3. Target Signal Selection Strategy

Prior to the post-processing stage, the BSS outputs must be cor-
rectly channelled such that the target signal dominant output will
be the input for the ANC and the remaining L − 1 outputs will
be the references. To achieve that, we propose to use the kurto-
sis. The kurtosis is a quantitative measure of non-gaussianity of a
signal. A smaller value of kurtosis indicates that the distribution
tends towards gaussian and a higher value kurtosis indicates that
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Fig. 2. The desired signal selection strategy.

the distribution tends towards supergaussian. Since speech signal
has a Laplacian distribution, it belongs to the supergaussian case,
which has a positive kurtosis value. This means that the speech
dominant signal from the BSS will have a higher kurtosis value
compared to noise dominant signal [5]. To rank the output signals
according to the kurtosis, we propose to calculate the mean of the
normalized kurtosis of the lth output, for all the Ω frequency bins,

Kur(yl(ω))=

Ω−1∑
ω=0

E[|yl(ω, k)|4]−2E2[|yl(ω, k)|2] − |E2[(yl(ω, k))2]|
σ4
yl(ω)

. (8)

yl(ω, k) is one of the outputs from the BSS, σ2
yl(ω) is the variance

of yl(ω, k) and | · | denotes the absolute value operator.
However, under the presence of both the target signal and the

acoustic echo, the kurtosis will not be able to function as desired
since both signals are of similar distributions (comparable kurtosis
value). To solve the problem, we make use of the far-end line echo
by computing the coherence between the top two kurtosis ranked
signals i.e. target signal dominant and echo dominant outputs re-
spectively. Needless to say, the echo dominant BSS output will be
more coherent to the far-end line echo and the target signal dom-
inant output can be easily singled out (see Figure 2). Here, the
coherence is calculated as

Coh(yl, line) =

Ω−1∑
ω=0

|Pyl,line(ω)|2
Pyl(ω)Pline(ω)

, (9)

where Pyl,line(ω) is the cross power spectra of the line echo and
one of the top two ranked BSS outputs, Pyl(ω) and Pline(ω)
are the power spectra of the corresponding BSS output and line
echo respectively. Figure 2 summarizes the target signal selec-
tion strategy. Notationally, the selected target signal is labelled
as ytarget(ω, k) and the remaining L − 1 outputs as yl,ref (ω, k)
where l = 1, · · · , L − 1.

2.4. Post-Processing & Acoustic Echo Cancellation

In this stage, the ANC is employed to cancel any components that
are temporally correlated to its L − 1 references (i.e. non-target
signal dominant BSS, yl,ref (ω, k)) from the target signal domi-
nant BSS output, ytarget(ω, k). To incorporate acoustic echo can-
cellation, the far-end line signal is used as an additional reference
in the ANC making it the L-th reference (yL,echo(ω, k)). Note
that even without the line-echo, the structure has the capability to
suppress the echo. However, with the additional line-echo, it pro-
vides more temporal information for the ANC to achieve a much
desirable performance.

In the interest of simplicity, the following modified frequency
domain leaky LMS algorithm for the frequency ω is used instead
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Fig. 3. The hands-free experimental layout: the solid circle is the
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H(ω, k + 1) = (1 − β)H(ω, k) + z∗(ω, k)Yref (ω, k)f(ω, k),
(10)

where the LQ × 1 stacked reference weights are

H(ω, k) = [h1(ω, k), · · · ,hL−1(ω, k),hL,echo(ω, k)]T , and
(11)

hl(ω, k) = [hl(ω, k), · · · , hl(ω, k−Q+2), hl(ω, k−Q+1)]T .
(12)

Similarly, the LQ × 1 stacked reference signals are

Yref (ω, k) = [y1,ref (ω, k), · · · ,

yL−1,ref (ω, k),yL,echo(ω, k)]T , where (13)

yl,ref (ω, k) = [yl,ref (ω, k), · · · ,

yl,ref (ω, k − Q + 2), yl,ref (ω, k − Q + 1)]T . (14)

The non-linear function f(ω, k) is given as

f(ω, k) =
γ

Qσ̂2
z(ω, k) + γYH

ref (ω, k)Yref (ω, k)
, (15)

where the constants β and γ are the leaky factor and the step size
respectively. Q is the order of the filter and σ̂2

z(ω, k) is a time-
varying estimate of the output signal power z(ω, k) that adjusts the
step size according to the target signal level. It is built upon the fact
that excess MSE increases with both the step size and the target
signal [5]. When this happens, the function in (15) will effectively
reduce the step size. The output signal power is estimated using the
square of vector norm of length Q and then exponentially averaged
as

σ̂2
z(ω, k) = (1 − λ)σ̂2

z(ω, k − 1) + λ‖z(ω, k)‖2, where (16)

z(ω, k) = [z(ω, k), · · · , z(ω, k − Q + 2), z(ω, k − Q + 1)]T ,
(17)

λ is the smoothing parameter, ‖·‖ denotes the Euclidean norm and
the output of the ANC is

z(ω, k) = ytarget(ω, k) − HH(ω, k)Yref (ω, k). (18)

3. EXPERIMENTS AND DISCUSSIONS

The proposed speech enhancement scheme was evaluated in a real
room of dimensions 3.5×3.1×2.3 m3 using a four-element linear
array with a spacing of 0.04 m, sampled at 8 kHz. Two loudspeak-
ers emitting babble noise were placed facing the front two corners
of the room to create diffuseness and three other loudspeakers (also
babble) were randomly placed in the middle of the room facing the
array. The exact positions of the speech source (female, English),
far-end loudspeaker (male, English) and interference are illustrated
in Figure 3. All simulations were performed with signal to noise
ratio SNR = −0.5 dB, signal to echo ratio SER = 0 dB, Ω = 512,
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Fig. 4. The spectrograms of (a) target signal, (b) far-end signal,
(c) corrupted signal, (d) BSS output and (e) proposed output for
non double-talk situation.

Operation BSS only Proposed
Mode NS ES NS ES

Non double-talk 3.35 dB 6.47 dB 23.36 dB 21.33 dB
Double-talk 5.35 dB 2.51 dB 20.81 dB 16.34 dB

Table 1. The noise (NS) and echo (ES) suppressions of the BSS
and the proposed scheme for non double-talk and double-talk.

D = 128, K = 5, and the number of taps in the adaptive filters
was Q = 4. The parameters α, γ, λ and the leaky factor β were
set to 1, 0.2, 0.99 and 10−6 respectively.

Figures 4 and 5 show the relevant spectrograms for the noisy
non double-talk and the double-talk situations respectively. The
plots reveal the superior performance of the structure in enhanc-
ing the corrupted target signal. Clearly from the plots, there is
a limitation to the separation capability of the BSS, given such
under-determined situations. Here, the post-processor efficiently
compensates the limitation by exploiting the temporal information.
To quantify the performance, the following suppression measure is
calculated

S = 10 log10

( ∑Ω−1
ω=0 P̂in(ω)∑Ω−1
ω=0 P̂out(ω)

)
− 10 log10(C), (19)

where P̂in(ω) and P̂out(ω) are the spectral power estimates of the
observation and the output respectively and the constant C normal-
izes to the target signal gain. Table 1 presents the noise and echo
suppressions compared to using BSS only. Results indicate that the
post-processing achieve significant suppression improvement over
BSS, yielding more than 20 dB of noise and echo suppressions.

The experiment also verifies the proposed target signal selection
strategy. For the case of non double-talk situation, the kurtosis of
the four BSS outputs were Kur(y1(ω)) = 15.42, Kur(y2(ω)) =

8.07, Kur(y3(ω)) = 16.18 and Kur(y4(ω)) = 8.78 respectively.
Markedly, the “speech dominant” outputs (i.e. target signal and
echo) were the two highest kurtosis at the first and third BSS out-
puts. The coherence of these outputs against the line echo were
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Fig. 5. The spectrograms of (a) target signal, (b) far-end signal,
(c) corrupted signal, (d) BSS output and (e) proposed output for
double-talk situation.

calculated to be Coh(y1, line) = 0.10 and Coh(y3, line) =
0.41. From the results, the coherence indicates that the line echo
is more coherent to y3 and this means that the target signal domi-
nant is the first BSS output y1. Informal listening test confirms the
validity of the proposed selection method.

4. CONCLUSIONS

A novel blind joint noise and echo cancellation scheme has been
presented. The structure takes advantage of the lack of a priori
information of the BSS whilst boosting its suppression capabil-
ity through a post-processor. A new signal selection strategy is
incorporated to distinguish the target signal from noise and echo
sources. The selection method efficiently singles out the target
signal dominant output even under the presence of acoustic echo
(speech). Results show impressive noise and echo suppressions
with good target signal integrity.
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